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Aligning sample size calculations with estimands
in clinical trials with time-to-event outcomes
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The ICH E9(R1) guidance recommended a framework to
align planning, design, conduct, analysis, and interpretation
of any clincial trial with its objective and estimand. How to
handle intercurrent events (ICEs) is one of the five attributes
of an estimand and sample size calculation is a key step in
the trial planning and design. Therefore, sample size calcula-
tion should be aligned with the estimand and, in particular,
with how the ICEs are handled. ICH E9(R1) summarized
five strategies for handling ICEs, and five approaches have
been proposed in the literature for sample size calculation
when planning trials with quantitative and binary outcomes.
In this paper, we discuss how to apply the five strategies to
deal with ICEs in clinical trials with time-to-event outcomes
and propose five approaches for sample size calculation that
are aligned with the five strategies, respectively.

AMS 2000 subject classifications: Primary 62N03,
62G10; secondary 62G99.
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1. INTRODUCTION

The International Council for Harmonisation (ICH)
E9(R1) guidance [7] stated that “central questions for drug
development and licensing are to establish the existence, and
to estimate the magnitude, of treatment effects: how the out-
come of treatment compares to what would have happened
to the same subjects under alternative treatment.” ICH
E9(R1) emphasized that “precision in describing a treat-
ment effect of interest is facilitated by constructing the es-
timand” and recommended “a framework to align planning,
design, conduct, analysis, and interpretation” with the trial
estimand. Since sample size calculation is a key step in the
planning and design stages of any clinical trial, we should
align sample size calculation with the estimand.

As summarized in ICH E9(R1), the five attributes of
an estimand are treatment, population, outcome variable,
a population-level summary, and how to deal with intercur-
rent events (ICEs). ICH E9(R1) defined ICEs as “events
occurring after treatment initiation that affect either the
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interpretation or the existence of the measurements asso-
ciated with the clinical question of interest”. ICH E9(R1)
proposed five strategies to deal with ICEs: (i) treatment-
policy strategy, (ii) hypothetical strategy, (iii) composite-
variable strategy, (iv) while-on-treatment strategy, and (v)
principal-stratum strategy.

In the literature of sample size calculation (e.g., [3, 9]),
a variety of methods have been proposed for sample size
calculation, from which we can select some method to align
with the first four of the five attributes of the estimand (i.e.,
treatment, population, outcome variable, and a population-
level summary). Hence, we need to generalize these methods
to align with the fifth attribute of the estimand (i.e., how
to deal with ICEs).

Fang and Jin (2021) proposed five approaches for general-
izing the existing methods of sample size calculation to align
with how the ICEs are handled, with each approach aligned
with one of the five ICH E9(R1)’s strategies [5]. However,
they focused on clinical trials with quantitative and binary
outcomes. In this paper, we extend their five approaches to
clinical trials with time-to-event (TTE) outcomes. We refer
to the “event” in the definition of the TTE outcome as the
“primary event”, to distinguish it from the censoring event
and ICEs.

The rest of the paper is organized as follows. In Section 2,
we review one simple method of sample size calculation for
clinical trials with TTE outcomes, when there are no ICEs
besides censoring. In Section 3, we discuss the application of
the five ICH E9(R1)’s strategies to handle ICEs in clinical
trials with TTE outcomes. In Section 4, we propose five
approaches of sample size calculation when planning clinical
trials with TTE outcomes and ICEs, with each subsection
devoted to one of the five strategies. We conclude the paper
with some discussion in Section 5.

2. CLINICAL TRIALS WITHOUT
INTERCURRENT EVENTS

Consider a randomized controlled clinical trial (RCT).
Let Z = 1 and 0 denote the random assignment to the treat-
ment arm and the control arm (e.g., placebo or standard of
care), respectively. Let v = 0, 1, · · · , V indicate baseline,
follow-up visit 1, · · · , follow-up visit V , respectively. Setting
t0 = 0 as the starting time at baseline, let tv be the time
at visit v, for v = 1, · · · , V . Let Av be the treatment to be
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taken by the subject between visit v−1 and v, v = 1, · · · , V .
Under the ideal scenario where there are no ICEs, Av = Z,
for v = 1, · · · , V .

Let T be the primary TTE outcome variable. For exam-
ple, in survival analysis, T is the time to death due to a
given disease, where “death due to a given disease” is the
primary event. Since the ICH E9(R1)’s central questions are
in terms of potential outcome [8], let Ta denote the potential
outcome had the the subject taken a given treatment regime
a = (a1, · · · , aV ). In particular, we are interested in two po-
tential outcomes, Ta=1 associated with 1 = (1, · · · , 1) and
Ta=0 associated with 0 = (0, · · · , 0).

Instead of proposing new methods for sample size calcu-
lation, in this paper we demonstrate the alignment of the
existing methods with how the ICEs are handled. For this
aim, consider the simplest setting that assumes exponential
distribution on the TTE outcome; that is, Ta=1 ∼ exp(λ1)
and Ta=0 ∼ exp(λ0). Hence the average treatment effect
(ATE) can be defined in terms of hazard ratio (HR),

HRATE = λ1/λ0.(1)

As an estimand of interest, HRATE has all the first
four attributes of an estimand: comparing active treatment
regime 1 vs. control treatment regime 0, a population to be
defined via inclusion/exclusion criteria, the TTE outcome
variable T , and hazard ratio as a population-level summary.
If there are no potential ICEs for every subject, the sample
size calculation is straightforward. For example, to achieve
1−β power under significance level α in a two-sided inequal-
ity test, we consider the following formula proposed in [12]
for calculating the needed number of events, denoted as E,
in the two arms combined,

E = 2×
[
2

(
Z1−α/2 + Z1−β

logHR

)2
]
,(2)

where HR is the expected hazard ratio between two arms
and Za is the upper 100 × a% quantile of standard normal
distribution N(0, 1). Note that formula (2) can be extended
to any randomization ratio other than 1:1.

To estimate the needed sample size, we need to estimate
the survival rates at tV in the two arms respectively, denoted
as πj = P (Ta=j > tV ), j = 1, 0. Hence, intermediately, as
in [12], the needed sample size in the two arms combined is
estimated as

N ′ =
E

1− (π1 + π0)/2
.(3)

A proportion of subjects will be censored due to adminis-
trative reasons (e.g., study termination). As in [12], if such
proportion is estimated as w, the final needed sample size
can be adjusted as

N =
N ′

1− w
.(4)

Figure 1. Some examples of observations: one patient with
the primary event occurring during the study; one patient
having no primary event throughout the study; and one

patient censored by the study termination.

Figure 1 presents three examples: one patient with the
primary event occurring during the study (the number of
such events is denoted by E); one patient having no primary
event throughout the study (the proportion of such events
in each arm is denoted as πj); and one patient censored by
the study termination (the proportion of such events in two
arms combined is denoted as w).

Example 0: Assume that HRATE = λ1/λ0 = 0.5, and as-
sume that the survival rate at the last follow-up visit in the
control arm would be P (Ta=0 > tV ) = 0.6. This implies the
survival rate at the last follow-up visit in the active treat-
ment arm would be P (Ta=1 > tV ) = exp{0.5 log(0.6)} =
0.775. Also assume that approximately 15% of subjects
would be lost to follow-up due to the study termination. To
achieve 1−β = 80% power under significance level α = 5%,
under the ideal scenario where there are no ICEs other than
loss of follow-up, by (2), we can calculate that the needed
number of events in two arms combined is E = 66. Further-
more, by (3) and (4), we estimate the final needed sample
size as

N =
66

[1− (0.6 + 0.775)/2](1− 0.15)
= 250,(5)

where the first term in the denominator is the averaged event
rate at the last follow-up visit, and the second term is to
adjust for the loss of follow-up.

Here is a remark on the round-up rule for sample size N .
From (5), N = 248.4706, which is rounded up to the nearest
even number N = 250, such that it can be divided into two
arms with each arm of 125 subjects.

3. STRATEGIES FOR HANDLING
INTERCURRENT EVENTS

In this section, we review the five strategies in ICH
E9(R1) for handling ICEs. ICH E9(R1) provided many ex-
amples of applying the five strategies to clinical trials with
continuous or binary outcomes, but lacked discussion for
clinical trials with TTE outcomes. This section itself is novel
to fill this gap.
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Figure 2. Illustration of the treatment-policy strategy, the
hypothetical strategy, and the composite-variable strategy for

handling ICEs in clinical trials with TTE outcomes.

We first illustrate the treatment-policy strategy, the hy-
pothetical strategy, and the compositive-variable strategy in
Figure 2, where the three subjects in Figure 1 are duplicated
and an ICE is added to each duplicated subject.

According to ICH E9(R1), by the treatment-policy strat-
egy, “the occurrence of the intercurrent event is consid-
ered irrelevant in defining the treatment effect of interest:
the value for the variable of interest is used regardless of
whether or not the intercurrent event occurs.” To apply the
treatment-policy strategy, the data should be collected as
usual after the occurrence of an ICE. This is illustrated in
Figure 2, where the occurrence of the three ICEs is “in-
gored” and the value for the outcome is used regardless of
whether or not the ICE occurs. Therefore, the treatment-
policy strategy can only be applied to handle non-terminal
ICEs such as discontinuing treatment, switching treatment,
or using rescue medication. Terminal ICEs such as death
due to other reasons should be handled by other strategies.

The hypothetical strategy can be applied to handle both
non-terminal (e.g., treatment discontinuation) and terminal
ICEs (e.g., death due to other reasons). According to ICH
E9(R1), by the hypothetical strategy, we need to envisage a
scenario “in which the intercurrent event would not occur:
the value of the variable to reflect the clinical question of in-
terest is the value which the variable would have taken in the
hypothetical scenario defined”. This implies that the value
that the outcome variable would have taken in the hypothet-
ical scenario is the potential outcome (a.k.a., counterfactual
outcome, because it is not observed actually). This is illus-
trated in Figure 2, where the three ICEs indicated by open
checks are considered as another mode of censoring. There-
fore, there are two reasons leading to censoring: one is the
ICE occurrence handled by the hypothetical strategy and
the other is the administrative censoring. In the literature
of survival analysis, the administrative censoring is implic-
itly handled by the hypothetical strategy [4], in which the
value of the outcome variable is that would have taken if
the subject had continued the assigned treatment after the
study termination.

The composite-variable strategy can also be applied to
handle both non-terminal ICES (e.g., drop-out due to lack

of efficacy) and terminal ICEs. According to ICH E9(R1),

by the composite-variable strategy, “an intercurrent event

is considered in itself to be informative about the patient’s

outcome and is therefore incorporated into the definition

of the variable”. Therefore, we need to re-define the TTE

outcome variable to be used in the construction of the es-

timand of interest. That is, we consider the occurrence of

an ICE as another mode of the primary event, as Figure 2

illustrates. For example, progression free survival is defined

as the time from the date of randomization to the date of

the first documented progression or death.

Now consider the fourth strategy, the while-on-treatment

strategy, which has rarely been applied to clinical trials with

TTE outcomes. According to ICH E9(R1), by the while-

on-treatment strategy, “response to treatment prior to the

occurrence of the intercurrent event is of interest”. “If a vari-

able is measured repeatedly, its values up to the time of the

intercurrent event may be considered relevant for the clinical

question”. However, an TTE outcome cannot be measured

immediately at the time of the occurrence of a non-terminal

ICE, and a terminal ICE will preclude the occurrence of the

primary event as well. Therefore, in ICH E9(R1), the while-

on-treatment strategy is mainly discussed for quantitative

and categorical outcomes, but not for TTE outcomes. To

order to apply the while-on-treatment strategy to TTE out-

comes, we need to envisage a hypothetical scenario where,

after the occurrence of a non-terminal ICE, the subjects

would stop taking the initially assigned treatments. Like in

applying the hypothetical strategy, the while-on-treatment

strategy also consider the occurrence of an ICE as another

mode of censoring.

Lastly, consider the principal-stratum strategy. Accord-

ing to ICH E9(R1), by the principal-stratum strategy, “the

target population might be taken to be the principal stratum

in which an intercurrent event would occur. Alternatively,

the target population might be taken to be the principal

stratum in which an intercurrent event would not occur.

The clinical question of interest relates to the treatment ef-

fect only within the principal stratum.” For TTE outcomes,

the principal-stratum strategy is often applied to handle ter-

minal ICEs, and usually the target population is taken to be

principal stratum in which an ICE would not occur. Within

this principal stratum, there are no ICEs, and therefore the

situation becomes the one discussed in Section 2.

Besides the above five strategies discussed in ICH E9(R1),

another strategy—to be referred as the competing-risk strat-

egy [1, 10, 13]—can also be applied to handle terminal ICEs

in clinical trials with TTE outcomes. Consequently, with the

competing-risk strategy in our tool-box, we may apply the

aforementioned hypothetical strategy to handle only non-

terminal ICEs rather than terminal ICEs. But this is out of

scope for this paper.
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4. CLINICAL TRIALS WITH
INTERCURRENT EVENTS

In planning a clinical trial with TTE outcome, besides the
adminstrative censoring that has been adjusted in (4), there
may be other types of ICEs. In the following five subsections,
we consider five approaches for sample size calculation, with
each approach aligned with each of the five ICH E9(R1)’s
strategies.

In Section 2, the method of [12] implicitly assumes that
the time to censoring is independent of the TTE outcome to
simplify the sample size calculation; otherwise, we need to
guess or estimate another parameter or more for the asso-
ciation between the censoring and the primary event. This
simplification is appropriate because the independence as-
sumption leads to a conservative estimate of the needed sam-
ple size. Following this tradition, hereafter, we assume that
the time to ICE is independent of the TTE outcome.

4.1 Treatment-policy strategy

Assume that there is one type of ICEs (e.g., treat-
ment discontinuation) and we want to handle it using the
treatment-policy strategy. Or, more generally, assume that
there is one class of several types of ICEs (e.g., treatment
discontinuation, rescue medication) and we want to han-
dle them using the treatment-policy strategy. In practice,
we should explicitly specify this strategy in the definition
of the estimand, and then align the sample size calculation
with it.

By the treatment-policy strategy, equivalently, we con-
ceptually modify the treatment attribute of the estimand:
comparing Z = 1 vs. Z = 0 instead of comparing a = 1
vs. a = 0. Hence, the new estimand is the intent-to-treat
(ITT) effect. Assume that the proportion of subjects who
are expected to have an ICE in arm Z = j is rj , j = 1, 0.
Assume the hazard in the control arm is the same regardless
of whether an ICE occurs; that is, (T |Z = 0) ∼ exp(λ0).
Meanwhile, to be conservative, assume the hazard in the
treatment arm jumps from λ1 to λ0 after an ICE occurs.
This assumption is similar to the jump-to-reference (J2R)
assumption in the literature of missing data [2, 11]. Under
the J2R assumption, the hazard function in the treatment
arm is not a constant, but its expectation is bounded by
(1− r1)λ

1 + r1λ
0, if—without loss of generality—assuming

λ1 < λ0. For the purpose of sample size calculation, we as-
sume the hazard in the treatment arm is approximated by
its bound (1−r1)λ

1+r1λ
0; that is, we conservatively assume

(T |Z = 1) ∼ exp{(1 − r1)λ
1 + r1λ

0} for simplicity. There-
fore, under these assumptions, the hazard ratio between the
two arms, Z = 1 vs. Z = 0, is diluted from HRATE to

HRITT =
(1− r1)λ

1 + r1λ
0

λ0
= (1− r1)HRATE + r1.(6)

Example 1: We continue the discussion of Example 0.
Furthermore, assume the proportion of subjects who are ex-
pected to have an ICE in each arm is r1 = r2 = r = 10%.

Using (6) we obtainHRITT = (1−0.1)(0.5)+0.1 = 0.55, and
calculate the needed event number as E = 88. The survival
rate at the V th visit in arm Z = 0 and 1 would be approx-
imately 0.6 and P (T > tV |Z = 1) = exp{0.55 log(0.6)} =
0.755, respectively. Hence the needed sample size is N =
88/{[1− (0.6 + 0.755)/2](1− 0.15)} = 322.

4.2 Hypothetical strategy

Assume that we want to deal with a class of ICEs using
the hypothetical strategy. By the hypothetical strategy, we
need to envisage a scenario “in which the intercurrent event
would not occur”. In the hypothetical scenario, Av = Z,
for v = 1, · · ·V . Hence, we are interested in comparing two
treatment regimes, a = 1 vs. a = 0, and the estimand is
HRATE defined in (1).

Assume that the proportion of subjects who are expected
to have an ICE in arm Z = j is rj , j = 1, 0. To calculate the
sample size, we first calculate the number of events using
(2) with HR = HRATE , calculate N ′ using (3), and then
calculate the sample size N using (4) with w replaced by

w∗ = w + (r1 + r2)/2,(7)

which is the sum of the proportion of administrative censor-
ing and the average of the proportions of ICE occurrence in
two arms.

Example 2: We continue the discussion of Example 0.
Furthermore, we assume the proportion of subjects who are
expected to have an ICE in each arm is r1 = r2 = r = 10%.
We use (2) with HR = HRATE to calculate the needed
event number as E = 66. Like in Example 0, the sur-
vival rates at the at the last follow-up visit in two regimes
a = 0 vs. a = 1 would be approximately 0.6 and 0.775,
respectively. By the hypothetical strategy, we use w∗ =
w + r = 0.15 + 0.1 = 0.25. Hence, the needed sample size is
N = 66/{[1− (0.6 + 0.775)/2](1− 0.25)} = 282.

4.3 Composite-variable strategy

Assume that we want to deal with a class of ICEs using
the composite-variable strategy. By the composite-variable
strategy, we need to re-define the outcome variable to be
used in the construction of the estimand of interest. For
the TTE outcome, we consider the occurrence of an ICE as
another mode of the event of interest. To this aim, let TICE

be the time to the ICE occurrence, and define the following
new outcome variable,

T ∗ = min{T, TICE}.(8)

Denote the hazards of T ∗ in the two arms, respectively,
as λ∗

i , i = 1, 0. Assume that the distribution of TICE

in arm Z = i is also exponential with hazard νi; that
is, (TICE |Z = i) ∼ exp(νi), i = 1, 0. Hence, under the
assumption that TICE and T are independent, we have
P (T ∗ > t|Z = i) = P (T > t|Z = i)P (TICE > t|Z =
i) = exp(−λit)exp(−νit) = exp{−(λi + νi)t} for any t > 0,
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implying that the distribution of T ∗ in arm Z = i is ex-
ponential distribution with hazard λ∗

i = λi + νi, i = 1, 0.
Note that P (TICE > tV |Z = i) = 1 − ri, according to the
definition of ri. Therefore, the hazard ratio associated with
T ∗ between the two arms is

HR∗
ATE =

λ1 + ν1
λ0 + ν0

=
log[exp(−λ1tV )× (1− r1)]

log[exp(−λ0tV )× (1− r0)]
.(9)

Example 3: We continue the discussion of Example 0.
Furthermore, we assume the proportion of subjects who
are expected to have an ICE in each arm is r1 = r2 =
r = 10%. Recall that in Example 0, exp(−λ1tV ) = 0.6 and
exp(−λ0tV ) = 0.775. By (9), the adjusted hazard ratio is

HR∗
ATE = log[0.775(1− 0.1)]/log[0.6(1− 0.1)] = 0.58.

Using (2) with HR = HR∗
ATE , the needed event number is

E = 106. Moreover, P (T ∗ > tV ) in two arms are expected
to be 0.6(1 − 0.1) and 0.775(1 − 0.1), respectively. Hence,
the needed sample size is

N =
106

{1− [0.6(0.9) + 0.775(0.9)]/2}(1− 0.15)
= 328.

4.4 While-on-treatment strategy

As discussed in Section 3, the while-on-treatment strat-
egy has rarely been applied to handle ICEs in clinical tri-
als with TTE outcomes, but for completeness, we provide
some brief discussion on how to conduct sample size calcula-
tion that is aligned with this strategy. Like the hypothetical
strategy, the while-on-treatment strategy also considers the
occurrence of an ICE as another mode of censoring. The
only difference between these two strategies is that the hy-
pothetical strategy assumes that the subjects continue their
assigned treatments after the ICE occurrence, while the
while-on-treatment strategy assumes that the subjects stop
their assigned treatments after the ICE occurrence. Since
both strategies consider the occurrence of an ICE as another
mode of censoring, the method for sample size calculation
is the same.

Example 4: We continue the discussion of Example 0.
Furthermore, we assume the proportion of subjects who are
expected to have an ICE in each arm is r1 = r2 = r =
10%. By the while-on-treatment strategy, the sample size
calculation is the same as the one in Example 2.

4.5 Principal-stratum strategy

Assume that we want to deal with a class of ICEs using
the principal-stratum strategy. Without loss of generality,
consider the target population taken to be principal stratum
in which no ICE would occur.

Let Cz be the potential compliance status for z = 1, 0.
That is, Cj = 0 means that an ICE would not occur had
the subject been assigned to Z = j, j = 1, 0. Therefore, the
principal stratum in which an ICE would not occur consists

of subjects with C1 = 0 and C0 = 0 [6]. Assume that the
proportion of subjects who are expected to have ICEs in
arm Z = j is rj , j = 1, 0. This implies that

P (C1 = 0 and C0 = 0) = 1− P (C1 = 1 or C0 = 1)

≥ 1− [P (C1 = 1) + P (C0 = 1)] = 1− (r1 + r0).

Let N be the needed sample size calculated in Section
2 using (2)-(4). To deal with ICEs using the principal-
stratum strategy and considering the principal stratum
{C1 = 0, C0 = 0}, to be conservative, we adjust the sample
size as

N∗ = N/(1− r1 − r0).(10)

Example 5: We continue the discussion of Example 0.
Furthermore, we assume the proportion of subjects who are
expected to have an ICE in each arm is r1 = r2 = r = 10%.
By the principal-stratum strategy considering the principal
stratum {C1 = 0, C0 = 0}, the needed sample size is N∗ =
N/(1− r1 − r0) = 250/0.8 = 314.

5. DISCUSSION

ICH E9(R1) emphasized the correct order for conducting
clinical trials: “having clarity in the trial objectives and ac-
counting explicitly for intercurrent events when describing
the treatment effect of interest at the planning stage should
inform choices about trial design, data collection and statis-
tical analysis.” Sample size calculation is a key step in study
planning and design and it should be aligned with how the
ICEs are to be dealt with.

In this paper, we discuss five basic approaches to sample
size calculation when planning and designing clinical trials
with TTE outcome variables and ICEs, with each approach
corresponding to each of those five strategies. In practice, it
is not uncommon to consider a combination of several strate-
gies to deal with a combination of several types of ICEs.
To be conservative, assume no subject will have more than
one ICEs. Hence, there are ten combinations of two differ-
ent strategies, ten combinations of three different strategies,
and so on. We can use a staged procedure to conduct sample
size calculation if a combination of several strategies is con-
sidered. For example, if we consider a combination of two
strategies numbered as 1 and 2, we start with the needed
sample size N0 for the ideal scenario without any ICE, then
we adjust the sample size as N1 with consideration of strat-
egy 1, and then we further adjust the sample size as N2 with
consideration of strategy 2.

To implement any proposed method, we follow the follow-
ing four steps. First, we categorize all the potential ICEs,
along with the corresponding strategies for dealing with
them. Second, we explicitly define an estimand of inter-
est that reflects the research objective. Third, together with
other investigators, we obtain an expected value of the given
effect size and expected proportions of all types of potential
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ICEs, along with references that support the expectations.
Fourth, we select an appropriate method that is aligned the
estimand and calculate the needed sample size.
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