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A nonparametric concurrent regression model
with multivariate functional inputs
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Regression models with functional responses and covari-
ates have attracted extensive research. Nevertheless, there
is no existing method for the situation where the func-
tional covariates are bivariate functions with one of the vari-
ables in common with the response function. In this article,
we propose a nonparametric function-on-function regression
method. We construct model spaces using a Gaussian kernel
function and smoothing spline ANOVA decomposition. We
estimate the nonparametric function using penalized like-
lihood and study properties of the Gaussian kernel func-
tion and the convergence rate of the proposed estimation
method. We evaluate the proposed methods using simula-
tions and illustrate them using two real data examples.
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1. INTRODUCTION

Functional data frequently occur in science, engineer-
ing, economics, and medicine. Statistical methods for func-
tional data have been studied extensively [14, 6, 8, 10]. Non-
parametric and semiparametric approaches are rapidly de-
veloped for function-on-function regression where both re-
sponse and covariates are functions [12, 24, 3, 26]. Never-
theless, to the best of our knowledge, there is no existing
method for the situation where the functional covariates are
bivariate functions with one of the variables in common with
that of the response function.

Our research was motivated by a stroke rehabilitation
study in which a set of 3D video games called Circus Chal-
lenge was used to improve stroke patients’ upper limb func-
tion [17, 18]. Each patient played the movement game at
scheduled times over a period of three months. At each visit
time t, a CAHAI (Chedoke Arm and Hand Activity Inven-
tory) score denoted as yi(t) is used to measure the impair-
ment level of subject i, and movement such as the forward
circle movement and sawing movement of upper limbs are
also collected. Denote xi(t, s) as the movement data at time
t and frequency s from the ith patient. We treat the response
yi(t) as a function over time t and covariates xi(t, s) as a
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vector of bivariate functions of time t and frequency s. We
are interested in the relationship between the CAHAI score
and movement functions and predicting the CAHAI score
using movement functions.

As a second example, denote xi(t, s) as the fertility rate
of a woman of age s in year t and yi(t) as the mortality rate
in year t from the ith country. We want to investigate the
relationship between fertility and mortality rates, a topic
of interest in population studies [20, 4, 13, 9]. Again, the
response yi(t) is a function of t and the covariate xi(t, s) is
a vector of bivariate functions of time t and s.

In this paper, we propose the following nonparametric
concurrent regression model (NCRM)

yi(t) = f(t,xi(t, ·)) + εi(t), i = 1, · · · , n,(1)

where f is a bivariate functional to be estimated nonpara-
metrically, and εi(t) is a random error.

When xi(t, s) = xi(t) which is a vector of functions inde-
pendent of s, [14] proposed the following concurrent linear
model

yi(t) = α(t) + xi(t)β(t) + εi(t), i = 1, · · · , n,(2)

where α(t) is an unknown function and β(t) is an unknown
column vector of functions. This model assumes a linear re-
lationship between the response variable yi(t) and the func-
tional covariates xi(t). To allow for nonlinear relationship,
[27, 15, 11, 7], and [23] considered the nonparametric con-
current model (NCM)

yi(t) = g(t,xi(t)) + εi(t), i = 1, · · · , n,(3)

where g is an unknown bivariate function. The proposed
NCRM (1) extends (3) to the situation where each covariate
is a bivariate function. We note that the extension is not
straightforward since the map f is a functional on xi(t, ·).

When xi(t, s) = xi(s) which is a vector of function in-
dependent of t, [14] proposed the following functional linear
model

yi(t) = α(t) +

∫
xi(s)β(t, s)ds+ εi(t), i = 1, · · · , n,(4)

where α(t) is an unknown function and β(t.s) is an unknown
column vector of bivariate functions. To allow for nonlin-
ear relationship, [26] considered the following nonparametric
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model

yi(t) =

∫
g(t, s,xi(t),xi(s))ds+ εi(t), i = 1, · · · , n,(5)

where g is an unknown four-variable function to be esti-
mated. Instead of the specific integration over s in (5), the
functional on xi(t, ·) in the proposed model (1) is unspeci-
fied. Therefore, model (1) provides a more flexible approach
to modeling the relationship between functional response
and functional covariates.

To the best of our knowledge, model (1) is new. We
will model the map f in (1) nonparametrically. Specifically,
we will construct a tensor product of two reproducing ker-
nel Hilbert spaces (RKHS) and derive a smoothing spline
ANOVA (SS ANOVA) decomposition for the tensor product
space [25, 5]. In addition to the new and flexible model (1),
this paper makes several contributions to the literature.
First, we construct a Gaussian kernel for the functional vari-
ables and build the RKHS induced by the Gaussian kernel.
We show that this kernel is strictly positive definite, and the
induced RKHS is separable and does not contain constant
functions. Second, based on the SS ANOVA decomposition
of the tensor product RKHSs, we estimate the function f us-
ing penalized least squares method and empirical functional
principal components of the response function space. We
employ the backfitting method to develop an efficient com-
putation algorithm. Third, we study the convergence rate of
the proposed estimation for model (1) under the L-risk con-
sistency [19]. We derive the convergence rate of the function
estimation under the norm of the RKHS. Simulations show
the proposed method performs well.

The structure of this paper is organized as follows. Sec-
tion 2 introduces the Gaussian kernel and SS ANOVA de-
composition. Section 3 presents the model estimation pro-
cedure and computation algorithm. In Section 4, we study
properties of the proposed reproducing kernel and the con-
vergence rate of the estimated regression function. Appli-
cations to real data and simulations are presented in Sec-
tions 5 and 6. Technical details and proofs are included in
Appendix.

2. NONPARAMETRIC CONCURRENT
REGRESSION MODEL

We consider the NCRM (1) where xi(t, ·) =
(xi1(t, ·), ..., xiq(t, ·)) is a q-dimensional vector of functional
variables at time t. For each fixed time t ∈ T and j ∈
{1, · · · , q}, xij(t, s) : S → R is a function of s in a space
denoted as X . For simplicity, we assume that T = [0, 1],
S = [0, 1] which is independent of t, and X ⊂ L2[0, 1]
which is also independent of t. Furthermore, we assume that
yi(t) ∈ Y ⊂ L2[0, 1], and εi(t) for i = 1, · · · , n are inde-
pendent identically distributed in L2[0, 1] with mean zero

and
∫ 1

0
E[εi(t)

2]dt < ∞. These are reasonable assumptions

for many applications, including two examples considered in
this paper.

For simplicity, we will refer f in the NCRM as a function
even though it is a functional when applied to xi(t, ·) as
functional data. To estimate f nonparametrically, we now
construct model spaces for f using SS ANOVA decomposi-
tion of the tensor product of two RKHSs.

For f as a function of t ∈ T , we consider the Sobolev
space

H(1) =

{
f : f and f ′ are absolutely continuous,(6)

∫ 1

0

(f ′′)2dt < ∞
}
.

The space H(1) has the following direct sum decomposition:

H(1) = {1} ⊕ {t} ⊕ H(1)
2 ,

where {1}, {t}, and H(1)
2 respectively consist of constant

functions, linear functions, and functions orthogonal to
the constant and linear functions. The reproducing kernels

(RK) of these three spaces are R
(1)
0 (t, t′) = 1, R

(1)
1 (t, t′) =

k1(t)k1(t
′), and R

(1)
2 (t, t′) = k2(t)k2(t

′)− k4(|t− t′|), where
k1, k2, and k4 are scaled Bernoulli polynomials defined as

k1(x) = x− 0.5,

k2(x) =
1

2

{
k21(x)−

1

12

}
,

k4(x) =
1

24

{
k41(x)−

1

2
k21(x) +

7

240

}
.

See [25] for details.
We next construct an RK and its corresponding RKHS

for f as a function (functional) of functions in X q. For any
u = (u1, · · · , uq) ∈ X q and u′ = (u′

1, · · · , u′
q) ∈ X q, we

construct a Gaussian kernel as

R
(2)
2 (u,u′) = exp

{
−||u− u′||2

2

}
,(7)

where ||u||2 =
∑q

i=1

∫ 1

0
u2
i (s)ds. The following theorem

shows that R
(2)
2 is positive definite.

Theorem 1. Assume that X is a complete space, then

(i) R
(2)
2 is symmetric and positive definite,

(ii) H(2)
2 is separable and does not contain non-zero con-

stant functions.

The proof of Theorem 1 is included in the Appendix. By
the Moore-Aronszajn theorem, there exists a unique RKHS

H(2)
2 with R

(2)
2 as its RK [21].

For the construction of an SS ANOVA decomposition, we

consider H(2) = {1} ⊕ H(2)
2 . The tensor product space H =
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H(1)⊗H(2) has the following SS ANOVA decomposition [25]:

H =
(
{1} ⊕ {t} ⊕ H(1)

2

)
⊗

(
{1} ⊕H(2)

2

)
= {1} ⊕ {t} ⊕ H(1)

2 ⊕H(2)
2

⊕
{
{t} ⊗ H(2)

2

}
⊕

{
H(1)

2 ⊗H(2)
2

}
� H0 ⊕H1 ⊕H2 ⊕H3 ⊕H4,(8)

where H0 = {1}⊕{t} corresponds to parametric main effect

of t, H1 = H(1)
2 corresponds to nonparametric main effect of

t, H2 = H(2)
2 corresponds to nonparametric main effect of u,

H3 = {t} ⊗H(2)
2 corresponds to linear-nonparametric inter-

action between t and u, and H4 = H(1)
2 ⊗H(2)

2 corresponds
to nonparametric-nonparametric interaction between t and
u. Denote ϕ1(t,u) = 1 and ϕ2(t,u) = k1(t) as basis func-
tions of H0. Using the fact that the RK of a tensor product
space equals the product of RKs [25], we have RKs

(9)

R0((t,u), (t
′,u′)) = 1 + k1(t)k1(t

′),

R1((t,u), (t
′,u′)) = R

(1)
2 (t, t′),

R2((t,u), (t
′,u′)) = R

(2)
2 (u,u′),

R3((t,u), (t
′,u′)) = R

(1)
1 (t, t′)R

(2)
2 (u,u′),

R4((t,u), (t
′,u′)) = R

(1)
2 (t, t′)R

(2)
2 (u,u′),

for spaces H0, H1, H2, H3, and H4, respectively. We may
consider any subset of subspaces as the model space for f .
For the simplicity of notations, we consider the full space H
in the remainder of the manuscript.

3. ESTIMATION AND COMPUTATION

We estimate f by minimizing the following penalized least
squares

1

n

n∑
i=1

{∫ 1

0

(yi(t)− f(t,xi(t, ·)))2dt
}
+

4∑
v=1

λv||Pvf ||2H

(10)

where f ∈ H in (8), λv are smoothing parameters, Pv is the
orthogonal projection in H onto Hv, and || · ||H is a norm
induced from H (details seen in [22]).

Let λv = λ/θv for v = 1, · · · , 4 and H∗ = ⊕4
v=1Hv. Define

a new inner product in H∗ as

〈f, g〉H∗ =

4∑
v=1

1

θv
〈Pvf, Pvg〉H,

where 〈·, ·〉H is the inner product in H and ||f ||H∗ =√
〈f, f〉H∗ . Then it is easy to check that the RK of H∗ under

the new inner product is

R∗((t,u), (t′,u′)) =
4∑

v=1

θvRv((t,u), (t
′,u′)).

Since the response functions are stochastic processes in
L2[0, 1], there exists a set of orthogonal basis functions
{φk(t), k = 1, 2, · · · } in L2[0, 1] such that {φk(t), k =
1, · · · , n} are the empirical functional principal components
of {y1(t), · · · , yn(t)} [6]. Let vik = 〈yi(t), φk(t)〉 and Likf =∫ 1

0
f(t,xi(t, ·)))φk(t)dt for i = 1, · · · , n and k = 1, · · · , n.

Assume that Lik are bounded linear functionals. Then, fol-
lowing similar arguments in [26], it can be shown that the
PLS (10) based on functional data yi(t) reduces to the fol-
lowing PLS based on scalar data vik:

1

n

n∑
i=1

n∑
k=1

(vik − Likf)
2 + λ||f ||2H∗ .(11)

Let H1n = span{
∫ 1

0
R∗((t,x(t, ·)), (t′,xi(t

′, ·)))φk(t
′)dt′,

i = 1, ..., n, k = 1, ..., n}, which is a subspace of H∗. Then
any f ∈ H∗ can be decomposed as

f = f0 + f1n + ρ,

where f0 ∈ H0, f1n ∈ H1n, and ρ ∈ H∗ 
 H1n. De-
note R∗

(t′,xi(t′,·))(t,x(t, ·)) = R∗((t,x(t, ·)), (t′,xi(t
′, ·))) as

a function with the second variable in the RK being fixed
at (t′,xi(t

′, ·)), and f1 = f1n + ρ. Then we can rewrite the
PLS (11) as

1

n

n∑
i=1

n∑
k=1

(vik − uik − 〈f1(t′,xi(t
′, ·)), φk(t

′)〉)2 + λ||f ||2H∗

=
1

n

n∑
i=1

n∑
k=1

(vik − uik − 〈〈f1, R∗
(t′,xi(t′,·))〉H∗ , φk(t

′)〉)2

+ λ||f ||2H∗

=
1

n

n∑
i=1

n∑
k=1

(vik − uik − 〈f1,
∫ 1

0

R∗
(t′,xi(t′,·))φk(t

′)dt′〉H∗)2

+ λ||f ||2H∗

=
1

n

n∑
i=1

n∑
k=1

(vik − uik − 〈f1n,
∫ 1

0

R∗
(t′,xi(t′,·))φk(t

′)dt′〉H∗)2

+ λ||f1n||2H∗ + λ||ρ||2H∗ ,

(12)

where uik =
∫ 1

0
f0(t

′,xi(t
′, ·))φk(t

′)dt′, the first equality uses
the reproducing property, and the third equality uses the
fact that ρ is orthogonal to H1n. Minimizing (12) must have
ρ = 0, and we obtain the following representer theorem.

Theorem 2 (Representer Theorem). The solution to the
PLS (10) is

f̂(t,x(t, ·)) =
2∑

j=1

djϕj(t) +

n∑
i=1

n∑
k=1

cikξik(t,x(t, ·)),(13)

where ϕ1(t) = 1, ϕ2(t) = k1(t), and ξik(t,x(t, ·)) =∫ 1

0
R∗((t,x(t, ·)), (t′,xi(t

′, ·)))φk(t
′)dt′.
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The PLS (12) reduces to

1

n

n∑
i=1

n∑
k=1

(vik − 〈f0,
∫ 1

0

R0(t′,xi(t′,·))φk(t
′)dt′〉H −(14)

〈f1n,
∫ 1

0

R∗
(t′,xi(t′,·))φk(t

′)dt′〉H∗)2 + λ||f1n||2H∗ .

It can be shown that

〈f0,
∫ 1

0

R0(t′,xi(t′,·))φk(t
′)dt′〉H =

2∑
j=1

aijkdj ,

〈f1n,
∫ 1

0

R∗
(t′,xj(t′,·))φl(t

′)dt′〉H∗ =
n∑

i=1

n∑
k=1

bikjlcik,

where R0(t′,xi(t′,·))(t,x(t, ·)) = R0((t,x(t, ·)), (t′,xi(t
′, ·))),

aijk =
∫ 1

0
ϕj(t)φk(t)dt, and bikjl =

∫ 1

0
ξik(t,xj(t, ·))φl(t)dt.

Let bvjlik =
∫ 1

0

∫ 1

0
Rv((t,xj(t, ·)), (t′,xi(t

′, ·)))φk(t
′) ×

φl(t)dtdt
′. Since R∗ =

∑4
v=1 θvRv, then bjlik =

∑4
v=1 θvb

v
jlik

and Σ =
∑4

v=1 θvΣv, where the (j+(l−1)n, i+(k−1)n)th
element of Σv is bvjlik. Let Yk = (v1k, · · · , vnk)T , Y =

(Y1
T , · · · ,Yn

T )T , c = (c11, c21, · · · , cnn)T , d = (d1, d2)
T , Σ

be an n2×n2 matrix with bjlik as the (j+(l−1)n, i+(k−1)n)
element, and T be a n2 × 2 matrix with aijk as the
(i+ (k − 1)n, j) element. Then the PLS (14) reduces to

(15)
1

n
||Y − Td−Σc||2 + λcTΣc.

The minimization problem (15) can be solved by the dsidr
function in the assist [25] R package. To save computational
time, we first use a backfitting procedure to compute the
smoothing parameters and then compute solutions to (15)
with θν for ν = 1, · · · , 4 being fixed at these estimates. The
computational procedure is presented as the NCRM algo-
rithm below. The algorithm consists of two steps: (1) es-
timate parameters θr, and (2) calculate c and d using the
kernel matrix Σ. The backfitting procedure in step (1) is
repeated until convergence or when the iteration number
reaches a pre-specified bound. Step (2) has closed-form so-
lutions for c and d with a fixed λ. We use the generalized
cross-validation (GCV) method to select the smoothing pa-
rameter λ.

4. STATISTICAL PROPERTIES

In this section, we study the convergence rate of the pe-
nalized least squares estimate f̂ . We assume that X and
Y are complete measurable spaces. Let P be a probability
measure on X q × L2(T ) and μ be the marginal measure on
X q induced from P . Denote M = T × X q.

Define a loss function

l(f ;x, y) =

∫ 1

0

(y(t)− f(t,x(t, ·)))2dt,

Algorithm 1 NCRM Algorithm

Set δ > 0 and initial values of coefficients d = d0, cv = c0v,
θv = θ0v, v = 1, · · · , 4, k.iter = 0 and a bound of iteration
number, k.max.
repeat

Calculate F̃ = Td+
∑4

v=1 θvΣvcv
Calculate Ỹ = Y −

∑4
v=1 θvΣvcv

Update d via the least-squares method with respect to Ỹ
and T

For r = 1, · · · , 4
Calculate Ỹ = Y − Td−

∑
v �=r θvΣvcv

Minimize 1
n
||Ỹ −Σrcr||2 + λrc

T
r Σrcr with respect to cr

Update θr = 1/λr

Calculate F = Td+
∑4

v=1 θvΣvcv
k.iter = k.iter + 1

until the average of absolute difference between F and F̃ is
less than δ or k.iter > k.max, and get θv, v = 1, · · · , 4
Calculate the kernel matrix Σ using the parameters θv
Minimize 1

n
||Y − Td −Σc||2 + λcTΣc with respect to c and

d, where λ is estimated by the GCV method.
return c and d

where y(t) ∈ Y and x ∈ X q. The corresponding L-risk func-
tion [19]

Rl,P (f) = EP [l(f ;x, y)].

Let D be an empirical measure based on the observed
data D, and empirical L-risk function [19]

Rl,D(f) =
1

n

n∑
i=1

l(f ;xi, yi).

Let f∗ = argmin
f∈H

Rl,P (f), R
∗
l,P,H = Rl,P (f

∗), and

fP,λ = argmin
f∈H

{
Rl,P (f) + λ||f ||2H∗

}
.

Obviously, f̂ = fD,λ. For a sequence of random vari-
ables An and a sequence of constants an, the notation
An = Op(an) means that An/an is bounded in probabil-
ity. We state convergence rates in the following theorems
and show proofs in the Appendix.

Theorem 3. Assume that f : M → R is measurable for
any f ∈ H, M is a complete measurable space, and |P |2 =∫
X q×L2(T )

||y(t)||22dP (x, y) < ∞. When λ → 0 and λ6n →
∞ as n → ∞, we have

|Rl,P (f̂)−R∗
l,P,H| = Op(λ),

||f̂ − fP,λ||H = Op(λ
3/2),

||fP,λ − f∗||H = op(1).

Theorem 3 shows that the function estimate f̂ is L-risk
consistent with a convergence rate of λ when λ → 0 and
λ6n → ∞ as n → ∞. Furthermore, f̂ is a consistent estima-
tion of f∗ under the norm of the RKHS H.
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Figure 1. Plots of CAHAI scores yi(t) (solid lines) and fitted functions f̂(t,xi(t, ·)) (dotted lines) from six patients.

5. APPLICATIONS

5.1 Stroke rehabilitation

The data came from a medical study on 70 stroke sur-
vivors, including 34 acute patients who had suffered a stroke
less than a month earlier and 36 chronic patients who had
suffered a stroke more than six months ago. We use data
from 34 acute patients to illustrate the proposed method.
The response variable is the CAHAI score, a patient’s daily
life dependency level or the upper limbs function impair-
ment level. We normalize the CAHAI scores by subtract-
ing the mean and dividing by the standard deviation. Each
patient was assessed up to 7 times over 3 months, with
a total of 173 observations obtained from the acute pa-
tients. As [2], we consider 3 bivariate functional variables
as functional covariates: forward circle movement of the
paretic limb from x axis (xi1 = LA05.lx), sawing move-
ment of the paretic limb from y axis (xi2 = LA09.ly), and
orientation movement of the non-paretic limb from x axis
(xi3 = LA28.rqx).

We fit model (1) with n = 34 and xi(t, ·) =
(xi1(t, ·), xi2(t, ·), xi3(t, ·)). We extend the cosine diagnos-
tic to assess the contributions of the components in the SS
ANOVA decomposition [5] as follows. The estimated func-
tion can be represented as

f̂(t,x(t, ·)) = μ̂+ f̂1(t) + f̂2(x(t, ·)) + f̂3(t,x(t, ·)),

where μ̂ ∈ {1} is the estimate of the constant, f̂1(t) ∈
{t} ⊕ H1 and f̂2(x(t, ·)) ∈ H2 are respectively the es-

timated main effects of t and x(t, ·), and f̂3(t,x(t, ·)) ∈
H3 ⊕ H4 is the estimated interaction between t and
x(t, ·). Let f̂∗ = (f̂∗(t,x1(t, ·)), · · · , f̂∗(t,xn(t, ·)))T , f̂∗

1 =

(f̂∗
1 (t), · · · , f̂∗

1 (t))
T , f̂∗

2 = (f̂∗
2 (x1(t, ·)), · · · , f̂∗

2 (xn(t, ·)))T

and f̂∗
3 = (f̂∗

3 (t,x1(t, ·)), · · · , f̂∗
3 (t,xn(t, ·)))T , where

a∗(t) = a(t) −
∫ 1

0
a(t)dt. We have f̂∗ = f̂∗

1 + f̂∗
2 + f̂∗

3 . As

in [5], we compute the quantities πk = 〈f̂∗
k , f̂

∗〉/||f̂∗||2 for
k = 1, 2, 3, where

〈f̂∗
k , f̂

∗〉 :=
n∑

i=1

∫ 1

0

f̂∗(t,xi(t, ·))f̂∗
k (t,xi(t, ·))dt,

to assess the contributions of the main effects and interac-
tion. We have π1 = −0.73, π2 = 0.32, and π3 = 1.41, indicat-
ing a large contribution from the interaction. This suggests
that the association between CAHAI score and movements
changes over time.

Figure 1 shows the scores yi(t) and the fitted functions

f̂(t,xi(t, ·)) for 6 patients. The overall trends of the fitted
functions and the observed scores are consistent. The up-
ward trend over time indicates that the recovery exercises
are effective.

We evaluate the model’s prediction performance using a
10-fold cross-validation:

RPE =
1

10

10∑
j=1

√
1

nj

∑
i∈jthfold

||Yi(t)− Ŷ
(−j)
i (t)||22

where Ŷ
(−j)
i (t) is the predicted value of Yi(t) based on a

fitted model using the data excluding the jth fold. The RPE
for stoke data is 1.170.

5.2 Human fertility and mortality

The relationship between fertility and mortality rates has
been a long-standing demographic interest [1]. Many articles
in demography mentioned the relationship between fertility
and mortality but were mainly limited to qualitative discus-
sions [20, 4, 13, 9]. This section explores the quantitative
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Figure 2. Plots of the mortality rates yi(t) (solid lines) and fitted functions f̂(t, xi(t, ·)) (dotted lines) in unit of ‰ from six
countries whose names are on the title.

relationship between age-specific fertility and mortality us-
ing the proposed model.

We download fertility data from the Human Fertility
Database website (www.humanfertility.org) that contains
annual age-specific fertility rate (ASFR) from 22 countries.
We download mortality rates at www.macrotrends.net/. We
select 16 countries that appeared in both databases. We con-
sider the time interval from 1981 to 2000 and age interval
from 15-year-old to 50-year-old to avoid zero ASFR values.

For country i, we consider mortality rate in calendar year
t as a functional response variable yi(t), and ASFR as a bi-
variate functional covariate xi(t, s) that depends on women’s
age in years (s) and calendar year (t). We fit model (1) with
n = 16. For cosine diagnostic we have π1 = 0.08, π2 = 0.71,
and π3 = 0.21. The largest contribution comes from the
main effect of x, indicating differences in ASFR between
countries account for more variations in the mortality rate
than time. Figure 2 shows observed and predicted mortal-
ity rates for six countries. Mortality rates between 1980 and
2020 keep declining with different rates. Since the number
of countries n = 16 is small, 5-fold cross validation is used
to test the prediction performance, and the RPE is 1.449.

6. SIMULATION STUDIES

Performance of the proposed method is evaluated by two
numerical simulation studies in this section.

In the first study, we generate data from model (1) with
a factorial design of two choices of sample size n, two ap-
proaches for generating scalar functions xi(t, ·), three choices
of function f(t, x(t, ·)), and three choices of random er-
rors. Specifically, we consider three sample sizes: n = 10,

n = 20, and n = 40. We generate scalar functions xi(t, ·) =
exp(x∗

i (t, ·))/(1 + exp(x∗
i (t, ·))) where x∗

i (t, ·) are n realiza-
tions of a Gaussian process with mean function μ(t) = t

and RBF kernel kg(s1, s2) = exp{−(s1−s2)
2

2 } and rational

quadratic kernel kl(s1, s2) = 1− (s1−s2)2

(s1−s2)2+1 , respectively. We

consider three cases of the function f(t, x(t, ·)) as follows:

F1 : f(t, x(t, ·)) = t2 +

∫ 1

0

x3(t, s)ds,

F2 : f(t, x(t, ·)) = t2
∫ 1

0

x3(t, s)ds,

F3 : f(t, x(t, ·)) = 0.25 + 0.5t+ 0.25

∫ 1

0

x3(t, s)ds+

0.5t

∫ 1

0

x3(t, s)ds,

where F1 is an additive model that consists of the
main effects of t and x, F2 consists of a nonparametric-
nonparametric interaction of t and x, and F3 consists of
the main effect of t and x and the linear-nonparametric
interaction of t and x. We consider three scenarios of
random errors εi(t): iid N(0, 0.12), iid N(0, 0.22), and iid
realizations of the Gaussian process with mean zero and
kernel function kt(ti, tj) = 0.1min(ti, tj). In practice, we
can not observe the whole x(t, s), instead observe values of
the curve at grid points. This paper considers two scenarios
for the choices of t and s: both t and s take 10 equally
spaced points in [0, 1], and t takes 20 equally spaced grid
points in [0, 1] and s takes 50 equally spaced grid points in
[0, 1]. All simulation are repeated 200 times.
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Table 1. Average RMSEs and standard deviations in parentheses when both t and s take 10 equally spaced points in [0, 1]

x(t, ·) Function n ε(t) ∼ N(0, 0.12) ε(t) ∼ N(0, 0.22) ε(t) ∼ GP (0, kt)

kg F1 10 0.060(0.015) 0.098(0.028) 0.110(0.054)
20 0.040(0.008) 0.070(0.013) 0.074(0.021)
40 0.030(0.005) 0.052(0.010) 0.052(0.013)

F2 10 0.048(0.014) 0.080(0.030) 0.094(0.043)
20 0.036(0.007) 0.056(0.009) 0.066(0.022)
40 0.025(0.004) 0.043(0.008) 0.046(0.013)

F3 10 0.049(0.017) 0.083(0.027) 0.094(0.033)
20 0.035(0.008) 0.059(0.016) 0.063(0.020)
40 0.026(0.005) 0.044(0.010) 0.048(0.015)

kl F1 10 0.060(0.018) 0.102(0.037) 0.110(0.038)
20 0.042(0.007) 0.072(0.016) 0.074(0.019)
40 0.031(0.006) 0.052(0.008) 0.055(0.013)

F2 10 0.052(0.020) 0.086(0.036) 0.090(0.034)
20 0.035(0.009) 0.055(0.012) 0.067(0.028)
40 0.026(0.005) 0.046(0.011) 0.047(0.013)

F3 10 0.047(0.012) 0.084(0.031) 0.092(0.033)
20 0.036(0.007) 0.056(0.013) 0.065(0.022)
40 0.025(0.006) 0.044(0.008) 0.052(0.020)

Table 2. Average RMSEs and standard deviations in parentheses when t takes 20 equally spaced points in [0, 1] and s takes 50
equally spaced points in [0, 1]

x(t, ·) Function n ε(t) ∼ N(0, 0.12) ε(t) ∼ N(0, 0.22) ε(t) ∼ GP (0, kt)

kg F1 10 0.053(0.012) 0.089(0.022) 0.122(0.045)
20 0.036(0.006) 0.062(0.012) 0.089(0.024)
40 0.027(0.003) 0.046(0.007) 0.069(0.017)

F2 10 0.046(0.014) 0.071(0.025) 0.097(0.033)
20 0.030(0.006) 0.052(0.014) 0.072(0.024)
40 0.022(0.004) 0.040(0.008) 0.057(0.016)

F3 10 0.044(0.012) 0.070(0.021) 0.100(0.037)
20 0.031(0.007) 0.051(0.012) 0.077(0.024)
40 0.023(0.004) 0.039(0.008) 0.058(0.017)

kl F1 10 0.054(0.010) 0.096(0.031) 0.124(0.042)
20 0.037(0.006) 0.064(0.011) 0.092(0.024)
40 0.028(0.004) 0.046(0.008) 0.064(0.013)

F2 10 0.047(0.014) 0.070(0.020) 0.099(0.034)
20 0.033(0.008) 0.051(0.013) 0.068(0.021)
40 0.022(0.003) 0.039(0.007) 0.053(0.015)

F3 10 0.046(0.013) 0.070(0.022) 0.098(0.037)
20 0.030(0.005) 0.053(0.014) 0.073(0.024)
40 0.024(0.004) 0.041(0.009) 0.057(0.015)

We generate n samples {yi(t), xi(t, ·) : i = 1, · · · , n} as
training data, and nt = 50 samples {ỹi(t), x̃i(t, ·) : i =
1, · · · , nt} as test data. Root Mean square error RMSE on
the test data

RMSE =

√√√√ 1

nt

nt∑
i=1

||f(t, x̃i(t, ·))− f̂(t, x̃i(t, ·))||22

is used to measure prediction from the proposed model,
where || · ||2 is the norm of L2(T ). Table 1 and Table 2
presents the averages of RMSE and standard deviations in

parentheses. We see that the proposed estimation method
performs well.

In the second study, we consider simulations settings sim-
ilar to the two real data examples in Section 5. For the stroke
data, input variables are from 3 movements: forward circle
movement of paretic limb, sawing movement of paretic limb
and orientation movement of non-paretic limb, denoted by
xi(t, ·) = (xi1(t, ·), xi2(t, ·), xi3(t, ·)), i = 1, · · · , n, where
n = 34. Based on these 3 movements, we construct a kernel
function,

R∗ = 0.5R1 + 0.1R2 + 0.1R3 + 0.5R4,(16)
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Table 3. Average RMSEs and standard deviations in
parentheses

Data ε(t) ∼ N(0, 0.12) ε(t) ∼ N(0, 0.22) ε(t) ∼ GP (0, kt)

stroke data 0.158(0.067) 0.306(0.111) 0.366(0.157)
ASFR data 0.584(0.366) 0.589(0.365) 0.613(0.365)

where R1, R2, R3 and R4 are defined in (9). With this kernel,
we generate data from the following model

yi(t) =

2∑
j=1

djϕj(t)

(17)

+

n∑
j=1

n∑
k=1

cjk

∫ 1

0

R∗
((t,xi(t,·))(t

′,xj(t
′, ·)))φk(t

′)dt′

+ εi(t),

where i = 1, · · · , n, {φk(t), k = 1, · · · , n} are empirical func-
tional principal components of the CHAI scores from the
stroke data, d = (d1, d2) and cjk are the estimated d and
cjk from the stroke data analysis.

We consider three random errors: εi(t): iid N(0, 0.12), iid
N(0, 0.22), and iid realizations of the Gaussian process with
mean zero and kernel function kt(ti, tj) = 0.1min(ti, tj).
We repeated the same process for the ASFR data. In each
simulation, we randomly select 60% of simulated data to
build the model and use it to predict the remaining ones.
All simulation are repeated 200 times.

Table 3 presents the averages of RMSEs and standard
deviations in parentheses. Again, the proposed method per-
forms well.

APPENDIX

Proof of Theorem 1. For simplicity of notation, we show
proof for the univariate case since the proof for the multi-

variate case is similar. Denote R
(2)
2 (u, v) = exp

{
− ||u−v||2

2

}
where u ∈ X and ||u|| =

∫ 1

0
u2(s)ds.

(i) The symmetry of R
(2)
2 is obvious. We only need to prove

that R
(2)
2 is positive definite. A kernel ψ(u, v) is a conditional

negative definite kernel if ψ(u, u) = 0, ψ(u, v) = ψ(v, u), and
∀ n ≥ 2, a1, · · · , an ∈ R,

∑n
i=1 ai = 0 and u1, · · · , un ∈ X ,

we have
∑n

i=1 aiajψ(ui, uj) ≤ 0. According to Schoenberg’s
theorem [16], exp{−tψ(u, v)}(t > 0) is a positive definite
kernel when ψ(u, v) is a conditional negative definite kernel.

For R
(2)
2 , we have

ψ(u, v) = ||u− v||2

= ||u||2 + ||v||2 − 2〈u, v〉,

where 〈u, v〉 =
∫ 1

0
u(s)v(s)ds. For ∀ n ≥ 2, a1, ..., an ∈ R,

∑n
i=1 ai = 0 and u1, · · · , un ∈ X , we have

n∑
i,j=1

aiajψ(ui, uj) =

n∑
i,j=1

aiaj(||ui||2 + ||uj ||2 − 2〈ui, uj〉))

= −2

〈 n∑
i=1

aiui,

n∑
j=1

ajuj

〉
≤ 0.

Therefore, R
(2)
2 is a positive definite symmetric kernel.

(ii) Denote the RKHS with RK R
(2)
2 as H

R
(2)
2
. We prove

by contradiction that H
R

(2)
2

does not contain any non-zero

constants. Given the properties of Hilbert Spaces, we only
need to prove 1 /∈ H

R
(2)
2
. We assume that c(u) ≡ 1 ∈ H

R
(2)
2
.

For {a1, · · · , an} ∈ R and ∀ {u1, · · · , un} ∈ X , let g(x) :=∑n
i=1 aiR

(2)
2 (ui, u). Note that c(ui) = 〈c(·), R(2)

2 (ui, ·)〉 = 1.
Then

n∑
i,j=1

aiajc(ui)c(uj) =

∣∣∣∣
n∑

i=1

aic(ui)

∣∣∣∣
2

=

∣∣∣∣
n∑

i=1

ai〈c(·), R(2)
2 (ui, ·)〉

∣∣∣∣
2

= |〈c(·), g(·)〉|2 ≤ ||g(·)2||

=

〈 n∑
i=1

aiR
(2)
2 (ui, ·),

n∑
j=1

ajR
(2)
2 (uj , ·)

〉

=
∑
i,j=1

aiajR
(2)
2 (ui, uj).

Since the choices of {a1, · · · , an} and {u1, .., un} are ar-

bitrary and R
(2)
2 (u, u) = exp{− ||u−u||2

2 } = e0 = 1, taking

n = 2 and a1 = a2 = 1, then we have R
(2)
2 (u, v) ≥ 1. But

we know that R
(2)
2 (u, v) ≤ 1, so that R

(2)
2 (u, v) ≡ 1. We

derive the contradiction. By Merce theorem, R
(2)
2 (u, v) =∑∞

i=1 λei(u)ei(v), then {
√
λei : i = 1, · · · ,∞} is a set

of orthogonal basis of H
R

(2)
2

so that H
R

(2)
2

is a separable

space.

Proof of Theorem 3. Since

|Rl,P (f̂)−R∗
l,P,H|

≤ |Rl,P (f̂)−Rl,P (fP,λ)|+ |Rl,P (fP,λ)−R∗
l,P,H|,

we need to calculate the convergence rate of |Rl,P (f̂) −
Rl,P (fP,λ)| and |Rl,P (fP,λ)−R∗

l,P,H| separately.
Because |P |2 and ||RH||∞ are bounded, without losing

generality, we assume that q = 1, |P |2 = 1, and ||RH||∞ = 1,
where RH is the RK of H and then Rl,P (0) ≤ |P |2 = 1 We
denote ω(z) = ||z(·)||22.

|Rl,P (f̂)−Rl,P (fP,λ)|

≤
∫
X×Y

|ω(y − f̂)− ω(y − fP,λ)|dP (x, y).
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Let r(x, y) = ||y(t)||2 + ||f̂ ||2 + ||fP,λ||2 + 1 and B(0, 2r) =
{ z | ||z||2 < 2r}. Let

z = z1 +
r

||z1 − z2||2
(z1 − z2), ∀z1, z2 ∈ B(0, r),

then

ω(z1)− ω(z2) ≤
||z1 − z2||2

||z1 − z2||2 + r
(ω(z)− ω(z2))

≤
2||ω|B(0,2r)||∞

r
||z1 − z2||2.

Therefore,

|Rl,P (f̂)−Rl,P (fP,λ)|

≤
∫
X×Y

2||ω|B(0,2r)||∞
r(x, y)

||f̂ − fP,λ||2dP (x, y)

≤C

∫
X×Y

|2r(x, y)|2 + 1

r(x, y)
||f̂ − fP,λ||2dP (x, y)

≤C

∫
X×Y

|r(x, y)| ||f̂ − fP,λ||2dP (x, y)

≤C

∫
X×Y

|r(x, y)|dP (x, y)||f̂ − fP,λ||∞

≤C

∫
X×Y

(||y(t)||2 + ||f̂ ||2 + ||fP,λ||2 + 1)dP (x, y)

× ||f̂ − fP,λ||∞
≤C(2 + ||f̂ ||∞ + ||fP,λ||∞)||f̂ − fP,λ||∞,

where C is an indeterminate constant depending on l.
We know that

λ||fP,λ||2H∗ ≤ arg inf
f∈H

Rl,P (f) + λ||f ||2H∗ ≤ Rl,P (0) ≤ 1,

hence ||fP,λ||∞ ≤ ||RH||∞||fP,λ||H ≤ Cλ− 1
2 and ||f̂ ||∞ ≤

||fP,λ||∞+ ||fP,λ− f̂ ||∞ ≤ Cλ− 1
2 +1 when ||fP,λ− f̂ ||H ≤ 1.

Therefore,

|Rl,P (f̂)−Rl,P (fP,λ)| ≤ Cλ− 1
2 ||fP,λ − f̂ ||H.

Meanwhile, according to Corollary 5.18 in [19], we know
that |Rl,P (fP,λ)−R∗

l,P,H| ≤ cλ.

Now for the sake of illustration, we denote l̃(t, x, y, f) :=
(y(t)− f(t, x(t, ·)))2, and pick special P̃ , D̃ on M× Y such
that

Rl̃,P̃ =

∫
M×Y

l̃(t, x, y, f)dP̃

=

∫
X×Y

∫ 1

0

(y(t)− f(t, x(t, ·)))2dtdP = Rl,P ,

Rl̃,D̃ =

∫
M×Y

l̃(t, x, y, f)dD̃

=

n∑
i=1

∫ 1

0

(yi(t)− f(t, xi(t, ·)))2dt = Rl,D.

Then fP,λ = fP̃ ,λ and f̂ = fD̃,λ. Similar to the proofs of
Theorem 5.8, Theorem 5.9 and Corollary 5.11 in [19], for
all P0, when l̃ is P0-integrable, there exist h : M× Y → R

satisfies ||h||L2(P̃ ) ≤ Cl̃λ
− 1

2 such that

||fP0,λ − fP̃ ,λ||H ≤ Cλ−1||EP̃hΦ− EP0hΦ||H,

where Φ((t, x(t, ·))) = RH(·, (t, x(t, ·))) is a canonical map.
Let P0 = D̃, then we have

||f̂ − fP,λ||H ≤ Cλ−1||EP̃hΦ− ED̃hΦ||H,

Hence, from Lemma 9.2 in [19] and, we get

P (|Rl,P (f̂)−R∗
l,P,H| ≥ ε)

≤P (Cλ− 3
2 ||EP̃hnΦ− ED̃hnΦ||H + cλ > ε)

≤O(n−1λ−6),

with ε = O(λ) and

P (||f̂ − fP,λ||H ≥ ε)

≤P (||EP̃hnΦ− ED̃hnΦ||H ≥ λε)

≤O(n−1λ−6)

with ε = O(λ
3
2 ).

From Theorem 5.17 the continuity in the regulariza-
tion parameter in [19], we know that ||fP,λ − f∗|| =
op(1) as n → ∞. The conclusion is confirmed.

Received 18 November 2022
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