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Heterogeneous survival data are commonly present in
chronic disease studies. Delineating meaningful disease sub-
types directly linked to a survival outcome can generate
useful scientific implications. In this work, we develop a
latent class proportional hazards (PH) regression frame-
work to address such an interest. We propose mixture pro-
portional hazards modeling, which flexibly accommodates
class-specific covariate effects while allowing for the base-
line hazard function to vary across latent classes. Adapt-
ing the strategy of nonparametric maximum likelihood esti-
mation, we derive an Expectation-Maximization (E-M) al-
gorithm to estimate the proposed model. We establish the
theoretical properties of the resulting estimators. Extensive
simulation studies are conducted, demonstrating satisfac-
tory finite-sample performance of the proposed method as
well as the predictive benefit from accounting for the het-
erogeneity across latent classes. We further illustrate the
practical utility of the proposed method through an appli-
cation to a mild cognitive impairment (MCI) cohort in the
Uniform Data Set.
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1. INTRODUCTION

The problem of exploring heterogeneous survival data of-
ten arises in studies of neurodegenerative diseases such as
mild cognitive impairment (MCI). For example, amnestic
MCI and non-amnestic MCI represent different etiologies
that manifest different risk of progression to dementia [22].
Accurately classifying MCI into meaningful subtypes has
played an important role in disease prognosis. Tradition-
ally based on the number and the type of affected cognitive
domains [28], classification of MCI subtypes has evolved to-
ward data-driven approaches that permit flexible utilization
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of various phenotype measurements collected from MCI pa-
tients, such as cognitive tests in different domains [11] and
neuroimaging biomarkers [9]. However, little investigation
has been made to delineate the subtypes of MCI and the as-
sociated heterogeneity directly with respect to the timing of
landmark disease events (e.g., diagnosis of dementia), which
may provide useful insight to help develop early and precise
intervention.

To fill in such a gap, a natural venue is to consider latent
class analysis (LCA) of the time-to-event outcome of inter-
est, which takes the perspective that the observed survival
data (e.g., time to dementia) are manifestations from dis-
tinct latent classes or subgroups. In literature, the LCA of
a survival outcome has often been investigated in conjunc-
tion with latent class modeling of other types of outcomes,
such as longitudinal outcomes [15, 23, 24, 29, among others]
and questionnaire responses [14]. These methods generally
require imposing assumptions regarding the relationship be-
tween the survival outcome and the other outcomes, such as
the conditional independence given the latent class member-
ship, which are difficulty to verify with the observed data.
More importantly, the interpretation of the latent classes
under such joint LCA models can be largely attributed to
the variations in the non-survival outcomes, and thus may
considerably deviate from the survival heterogeneity of in-
terest.

LCA methods tailored to probe the heterogeneity solely
pertaining to a survival outcome, however, are sparse. Rel-
evant existing work includes the mixture Weibull models
[4, 16, for example] and mixture exponential models [13, for
example], which were proposed to investigate heterogeneous
event time distributions for two or more underlying classes.
However, these methods assumed parametric distributions,
and thus may be in jeopardy of generating biased inference
when these parametric assumptions are not adequate for the
real data. Rosen and Tanner [26] developed an estimation
procedure for a mixture of Cox’s proportional hazards (PH)
models [5] under the concept of “mixture-of-experts”. How-
ever, their model assumed a common baseline hazard func-
tion for all component Cox models within the mixture. Note
that even when considering the Cox PH modeling under the
joint LCA modeling of survival and longitudinal data, addi-
tional model restrictions were often imposed, such as a spline
formulation of the baseline hazard function [23] or a com-
mon covariate effect across different latent classes [15, 14].
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More recently, a deep neural network approach [21] was pro-
posed to tackle a mixture of Cox models; however such an
approach lacks a clear statistical framework for studying
asymptotic behaviors of the resulting estimates.

Motivated by the limitations of the existing methods, we
propose a semi-parametric approach to conducting latent
class proportional hazards (PH) regression analysis of sur-
vival data to help reveal the heterogeneity of disease pop-
ulation and its implications on disease progression. In this
work, we adopt flexible latent class PH modeling which per-
mits the nonparametric baseline hazard function to vary
across different latent classes, and also allows for class-
specific covariate effects. To estimate the proposed model
which involves an infinite-dimensional parameter (i.e. the
unspecified baseline cumulative hazard function), we em-
ploy the technique of non-parametric maximum likelihood
[32, NPMLE] and properly adapt it to deal with the ex-
tra challenges associated with the unobservable latent class
label or membership. Following the lines of [17], we rigor-
ously establish the asymptotic properties of the proposed
estimators through employing empirical process arguments
[27] and semi-parametric efficiency results [2]. We also inves-
tigate different inference strategies, including utilizing the
information matrix or employing the profile likelihood [19].
Finally, we derive a stable expectation-maximization (E-M)
algorithm to implement the proposed estimation and infer-
ence. Our algorithm can be easily carried out with existing
software or algorithms. According to our numerical experi-
ence, the proposed EM algorithm is robust to initialization
and performs well with non-informative initial values.

2. DATA AND MODELS

2.1 Data and notations

Let T denote time to the event of interest and let C
denote time to independent censoring of T . Let x denote
a p × 1 vector of baseline covariates. Define T̃ = T ∧ C
and Δ = I(T ≤ C), where ∧ is the minimum operator.
The observed data consist of n independent and identi-
cally distributed replicates of O = (T̃ ,Δ,x), denoted by
{Oi = (T̃i,Δi,xi), i = 1, . . . , n}. The latent class member-
ship is indicated by ξ = (ξ1, . . . , ξL), where L denotes the
number of latent classes, and ξl = 1 if the underlying latent
class is the l-th class and 0 otherwise.

2.2 The assumed models

We assume that the whole population consists of L la-
tent classes, within each of which, T follows a class-specific
semiparametric proportional hazards model. We further as-
sume that the class-specific baseline hazard functions are
proportional to each other. To formulate class-specific base-
line hazard functions under this proportionality assumption,
we first choose a reference class and then define the base-
line hazard functions for the other classes as some constants
multiplying the baseline hazard function for the reference

class. Specifically, without loss of generality, we let class 1
(i.e. ξ1 = 1) be the reference class, where T has the hazard
function λ(t|ξ1 = 1, x̄) = λ0(t) exp(x̄

T ζ1). Here λ0(t) is the
unspecified baseline hazard function for the reference class,
x̄ is a q × 1 subvector of x with q ≤ p, and ζ1 is a q × 1
vector representing unknown covariate effects in the refer-
ence class. For the other classes, we assume λ(t|ξl = 1, x̄) =
λ0(t) exp{al + x̄T (ζ1 + ζl)}, l = 2, . . . , L, where al is an
unknown parameter with exp(al) representing the constant
hazard ratio between class l and class 1, and ζl is a q × 1
vector of unknown coefficients representing the differences
in covariate effects between class l and class 1. Define zl =
(x̄T ,0T

(q+1)×(L−1))
T · I(l = 1)+(x̄T , (el−1⊗ x̌)T )T · I(l > 1)

and γ = (ζT
1 , a2, ζ

T
2 , a3, ζ

T
3 , . . . , aL, ζ

T
L)

T , where 0d repre-
sents a d−vector of zeros, el−1 represents a vector of length
(L− 1), where the (l − 1)th element is 1 and the other ele-
ments are equal to zero, x̌ = (1, x̄T )T , and ⊗ denotes Kro-
necker product operator. With these notations, it is easy
to see that a unified expression for the class-specific hazard
functions is given by

(1) λ(t|ξl = 1) = λ0(t) exp(z
T
l γ), l = 1, . . . , L.

By the definition, γ is the vector of unknown parameters
with length q × L+ (L− 1).

We also adopt a standard latent polytomous logistic re-
gression model [1] to model the latent class probabilities.
That is, we assume

Pr(ξl=1|x)=pl(x;α)=
exp(x̃Tαl)∑L

d=1 exp(x̃
Tαd)

, l=1, . . . , L,

(2)

where x̃ = (1,xT )T , α1 = 0 for the identifiability con-
sideration, and α = (α2, . . . ,αL)

T is a vector of unknown
parameters with length (p+ 1)× (L− 1).

Define Λ0(t) =
∫ t

0
λ0(s)ds and let θ = {γT ,Λ0(·)}T . Un-

der models (1) and (2), the conditional density of (T̃ ,Δ)
given x can be written as

(3) f(T̃ ,Δ|x;α,θ) =

L∑
l=1

pl(x,α)fl(T̃ ,Δ|x;θ),

where fl(T̃ ,Δ|x;θ) = {λ0(T̃ )e
zT
l γ}Δ exp{−Λ0(T̃ )e

zT
l γ},

standing for the class-l density of (T̃ ,Δ) implied by
model (1).

In the sequel, we shall use α0, γ0, and Λ0 to denote the
true parameters in model (1) and model (2), and use α, γ,
and Λ to denote elements in the parameter spaces for α0,
γ0, and Λ0 respectively.

3. ESTIMATION AND INFERENCE

In this section, we derive the estimation procedure for
α0, θ0, and Λ0(·). We also study the theory and inference
associated with the proposed estimators.
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3.1 The observed data likelihood

Under models (1) and (2), the observed data likelihood
can be written as

L(α,γ,Λ;O) =

n∏
i=1

{ L∑
l=1

pl(xi;α){λ(T̃i) exp(z
T
ilγ)}Δi

exp{−Λ(T̃i) exp(z
T
ilγ)}

}
fX(xi),

(4)

where fX(·) is the density function of x. Note that fX(xi)
does not involve the unknown parameters, α,γ, and Λ, and
thus is omitted in further derivations.

It is challenging to directly maximize the observed data
likelihood L(α,γ,Λ;O) due to the structure of mixture dis-
tributions and the involvement of the nonparametric pa-
rameter Λ(·). To conquer these difficulties, we derive an
Expectation-Maximization (EM) algorithm which naturally
accommodates the unobservable latent class membership
and incorporates the strategy of NPMLE for the estimation
of Λ0(·).

3.2 The proposed EM algorithm

Suppose ξ is observed. The likelihood corresponding to
the complete data (ξ,O) takes the form,

Lc(α,γ,Λ; ξ,O) =

n∏
i=1

L∏
l=1

{
pl(xi;α){λ(T̃i) exp(z

T
ilγ)}Δi

exp{−Λ(T̃i) exp(z
T
ilγ)}

}I(ξil=1)

.

Following the NPMLE strategy, we further treat Λ(·) as
piecewise constant between the observed event times. That
is, we let Λ(t) =

∑
j:tj≤t Λ{tj} with Λ{tj} = dj , where

t1 < t2 < . . . < tm are distinct uncensored event times. De-
note the cumulative hazard function Λ(tj) at tj by Λj

(j = 1, . . . ,m). Then the corresponding log complete data
likelihood can be expressed as

�c(α,γ,Λ; ξ,O) =

m∑
j=1

L∑
l=1

ξ(j)l

{
log Λ{tj}+ zT

(j)lγ − ez
T
(j)lγΛj

}

−
m∑
j=1

∑
k:tj≤T̃k<tj+1

I(Δk = 0)

L∑
l=1

ξkle
zT
klγΛj

+

n∑
i=1

L∑
l=1

ξil log pl(xi;α),

(5)

where ξ(j)l and z(j)l respectively represent the membership
indicator ξl and covariate vector zl for the observation with
uncensored failure time tj (j = 1, . . . ,m).

In the E-step, we calculate the expectation of the
log complete data likelihood conditioned on the observed
data O and the current estimates of unknown param-
eters α(j),γ(j), and Λ(j) at the jth iteration, namely,
E{�c(α,γ,Λ; ξ,O)|O,α(j),γ(j),Λ(j)}. Given the linearity
with respect to ξ in (5), it is straightforward to see

E{�c(α,γ,Λ; ξ,O)|O,α(j),γ(j),Λ(j)} =

�c{α,γ,Λ; Ê(ξ),O},

where Ê(ξ) = {Ê(ξil) : i = 1, . . . , n; l =
1, . . . , L} with Ê(ξil) = E(ξil|Oi;α

(j),γ(j),Λ(j)). Note that
E(ξil|Oi;α,γ,Λ) = Pr(ξil = 1|Oi;α,γ,Λ). By applying the
Bayes’ Rule, we get

Ê(ξil) =Pr(ξil = 1|Oi;α
(h),γ(h),Λ(h))

=
pl(xi;α

(h))fl(T̃i,Δi|xi;γ
(h),Λ(h))∑L

d=1 pd(xi;α(h))fd(T̃i,Δi|xi;γ(h),Λ(h))
.

(6)

Denote the resulting conditional expectation
�c{α,γ,Λ; Ê(ξ),O} by Q(α,γ,Λ). In the subsequent
M-step, Q(α,γ,Λ) serves as the target function to
maximize.

In the M-step, we adopt a profile likelihood strategy
to maximize Q(α,γ,Λ) that profiles out Λ, where Λ is
treated as an m-dimensional unknown parameter {dk : k =
1, . . . ,m} with dk = Λ{tk}. First, with fixed α and γ, we
obtain Λ̂(t;α,γ) = argmaxΛ Q(α,γ,Λ) by solving

∂

∂dk
Q(α,γ,Λ)

=
1

dk
−

∑
i:T̃i≥tk

L∑
l=1

Ê(ξil)e
zT
ilγ = 0, k = 1, . . . ,m.

This gives d̂k(γ) = {
∑

i:T̃i≥tk

∑L
l=1 Ê(ξil)e

zT
ilγ}−1, k =

1, . . . ,m, and

(7)

Λ̂(t;α,γ) =
∑

k:tk≤t

d̂k(γ) =

∫ t

0

∑n
i=1 dNi(s)∑n

i=1

∑L
l=1 Ê(ξil)Yi(s)ez

T
ilγ

,

where Ni(t) = I(T̃i ≤ t,Δ = 1) and Yi(t) = I(T̃i ≥ t).
Then by plugging in Λ̂(t;α,γ) into Q(α,γ,Λ), we ob-
tain the profile complete data log likelihood Qp(α,γ) ≡
Q{α,γ, Λ̂(t;α,γ)}:

Qp(α,γ) =

n∑
i=1

L∑
l=1

Ê(ξil)

[
log pl(xi;α)+

∫ t∗

0

{
log

1∑n
i=1

∑L
l=1 Ê(ξil)Yi(s)e

zT
ilγ

+ zT
ilγ

}
dNi(s)

]
,

(8)
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where t∗ is a finite constant satisfying t∗ > tm. Then we can
find α̂ = argmaxα Qp(α,γ) and γ̂ = argmaxγ Qp(α,γ) by
solving

∂

∂α
Qp(α,γ) =

n∑
i=1

L∑
l=1

Ê(ξil)
∂

∂α
log pl(xi;α) = 0

and

∂

∂γ
Qp(α,γ) =

n∑
i=1

L∑
l=1

∫ t∗

0

Ê(ξil)

(
zil

−
∑n

j=1

∑L
k=1 Ê(ξjk)Yj(u)zjk exp(z

T
jkγ)∑n

j=1

∑L
k=1 Ê(ξjk)Yj(u) exp(zT

jkγ)

)
dNi(u) = 0.

The resulting estimator of Λ0(t) is given by Λ̂(t) =
Λ̂(t; α̂, γ̂).

Remark: It is easy to see that solving ∂
∂αQp(α,γ) = 0 is

equivalent to fitting a weighted multinomial logistic regres-
sion with weights Ê(ξ), which can be easily implemented by
R package VGAM [30]. In addition, equation ∂

∂γQp(α,γ) = 0
can be viewed as the score equation corresponding to the
partial likelihood of the proportional hazards regression with
data {(T̃il,Δil, zil) : i = 1, . . . , n; l = 1, . . . , L} with
T̃il = T̃i, Δil = Δi, and weights Ê(ξil). Nevertheless, we
choose not to solve ∂

∂γQp(α,γ) = 0 by fitting a weighted
Cox regression. This is because an existing computational
routine for the weighted Cox regression would exercise a
special tie treatment for the pseudo ties caused by repeat-
edly counting each observed event time for multiple latent
classes (i.e. {T̃il}Ll=1), making the resulting estimates not
accurately correspond to a solution to ∂

∂γQp(α,γ) = 0. In-
stead, we implement an efficient Newton-Raphson algorithm
under Rcpp environment [6] to directly solve the equation
∂
∂γQp(α,γ) = 0.

To implement the proposed EM algorithm, we begin with
an initial guess of Ê(ξ), which can be a random guess or
obtained in an informative way such as K-means cluster-
ing of T̃ . Then we repeat the M-step and E-step until a
stopping criterion is satisfied. We propose to use an Aitken
acceleration-based stopping criterion as described in [18,
page 52]. Denote l(k) as the logarithm of the observed-data
likelihood (4) evaluated with the parameter estimates at the
kth iteration. Define a(k) = (l(k+1) − l(k))/(l(k) − l(k−1))

and l
(k+1)
A = l(k) + (l(k+1) − l(k))/(1− a(k)). The algorithm

is stopped when |l(k+1)
A − l

(k)
A | < tol, where tol is a pre-

specified tolerance parameter. In our numerical studies, we
set tol = 10−7 to ensure convergence to a local optimum.

3.3 Asymptotic properties and inference
procedures

We establish desirable asymptotic properties of the esti-
mators obtained from the proposed estimation procedure by
using the NPMLE arguments similar to those used in [31]
and [17].

We assume the following regularity conditions:
(C1) There exists t∗ > 0 such that Pr(C = t∗) > 0 and
Pr(C > t∗) = 0;
(C2) For l = 1, . . . , L, Pr(ξl = 1|x;α) ∈ (0, 1).
(C3) ||α0|| < ∞; ||γ0|| < ∞; ||zl|| < ∞ for l = 1, . . . , L;
Λ0(·) is continuously differentiable with Λ′

0(t) > 0 on [0, t∗],
where || · || denotes the Euclidean norm.

Conditions (C1)-(C3) are reasonable in practical applica-
tions. Condition (C1) is often satisfied in the presence of
administrative censoring. This condition helps prove the uni-
form consistency of Λ̂(·) on [0, t∗]. Condition (C2) ensures
that the latent class membership probabilities pl(x;α) is
greater than zero, which further guarantees that log pl(x;α)
has a finite lower bound. Condition (C3) assumes the
smoothness of Λ(·) and the boundedness of α0, γ0 and base-
line covariates x.

We establish the asymptotic properties of the proposed
estimators in the following two theorems with proofs pro-
vided in Web Appendix A.

Theorem 3.1. Under regularity conditions (C1)-(C3), α̂,
γ̂, and Λ̂(·) are strongly consistent. That is, ||α̂ − α0|| +
||γ̂ − γ0||+ supt∈[0,t∗] |Λ̂(t)− Λ0(t)| → 0 almost surely.

Theorem 3.2. Under regularity conditions (C1)-(C3),√
n(α̂ − α0) and

√
n(γ̂ − γ0) converges to multivariate

mean zero Gaussian distributions;
√
n{Λ̂(t) − Λ0(t)} con-

verges weakly to a univariate mean zero Gaussian process
on t ∈ [0, t∗]. In addition, α̂ and γ̂ are semiparametric effi-
cient as defined in [2].

Based on the developed theory, we propose to con-
duct variance estimation based on the information ma-
trix of the observed-data profile log-likelihood [19], de-

fined as pl(α,γ) ≡ �{α,γ, Λ̂(α,γ);O}. Define p̂l(α̂, γ̂) =

�{α̂, γ̂, Λ̂(α̂, γ̂);O}, and let p̂lj(α̂, γ̂) be the subject j’s

contribution to p̂l(α̂, γ̂). The covariance matrix of θ̂ ≡
(α̂T , γ̂T )T ∈ R

r can be estimated by the inverse of

n∑
j=1

⎛
⎜⎜⎝

p̂lj(θ̂+hnε1)−p̂lj(θ̂−hnε1)

2hn

...
p̂lj(θ̂+hnεr)−p̂lj(θ̂−hnεr)

2hn

⎞
⎟⎟⎠

⊗2

,

where r = (p + 1) × (L − 1) + q × L + L − 1, εk is the
kth canonical vector in R

r, d⊗2 = ddT , and hn is a con-
stant of order n−1/2. In our numerical studies, we choose
hn = 5n−1/2 by following [8]. Instead of using the numerical
approximation of Hessian matrix as in [19], we utilize the
outer product of the first order numerical differences, which
is more computationally affordable and guarantees that the
resulting covariance matrix estimator is positive definite.

Alternatively, an analytical consistent variance estimator
based on observed-data log-likelihood can be constructed
by adapting the arguments of [31], which enable inference
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for Λ̂(t) in addition to α̂ and γ̂. Details about the analyt-
ical variance estimator are provided in Web Appendix A.
The analytical variance estimator typically requires inverse
matrix computation for a large covariance matrix due to
the inclusion of the cumulative hazard function, which may
cause numerical instability. In practice, we recommend using
the profile likelihood approach to obtain variance estimates
for α̂ and γ̂, and making inference on Λ0(t) based on the
analytical approach.

3.4 Selection of the number of latent classes

In practice, the number of latent classes, L, can be se-
lected by using domain knowledge or some data-driven cri-
teria. The commonly used data-driven criteria include stan-
dard model selection criteria, for example, the Akaike infor-
mation criterion (AIC) defined as −2 logL(α,γ,Λ;O)+ 2r,
where r = (p+1)×(L−1)+q×L+L−1, and the Bayesian in-
formation criterion (BIC) defined as −2 logL(α,γ,Λ;O) +
r logn, and entropy-based criteria, such as the standardized
entropy index 1 −

∑n
i=1

∑L
l=1 Ê(ξil){− log Ê(ξil)}/n logL

[20], and integrated complete-data likelihood (ICL-BIC)
[3, 12], which is defined as −2 logL(α,γ,Λ;O) + r log(n)−
2
∑n

i=1

∑L
l=1 Ê(ξil) log Ê(ξil). We investigate the perfor-

mance of using different criteria for determining the number
of latent classes through the simulation studies reported in
Section 4.2.

3.5 Survival prediction

Precise survival prediction is of great practical interest.
Based on the models (1) and (2), we propose to predict the
survival function for a subject with covariates x by

(9) Ŝ(t|x) =
L∑

l=1

pl(x; α̂) exp{−Λ̂(t) exp(zT
l γ̂)}.

As shown by our numerical studies, the survival prediction
by Ŝ(t|x) properly accounts for the heterogeneity across la-
tent classes and can be more precise than the predictions
that ignore the existence of latent classes.

To evaluate the performance of survival prediction, we
propose to utilize the Brier Score, defined as E[{I(T ≥
t) − Ŝ(t|x)}2]. In practice, we observe Y (t) = I(T̃ ≥ t) in-
stead of I(T ≥ t). To accommodate censoring to T , we con-
sider the following two estimators of the Brier Score which
are adapted from the estimators presented in [25]: (a) data-
based Brier score,

B̂S1(t) =
1

n

n∑
i=1

{
I(T̃i > t)

Ĝ(t)
{1− Ŝ(t|xi)}2

+
ΔiI(T̃i ≤ t)

Ĝ(T̃i)
{0− Ŝ(t|xi)}2

}
;

(b) model-based Brier score,

B̂S2(t) =
1

n

n∑
i=1

[
I(T̃i > t){1− Ŝ(t|xi)}2+

ΔiI(T̃i ≤ t){0− Ŝ(t|xi)}2

+ (1−Δi)I(T̃i ≤ t)

{
{1− Ŝ(t|xi)}2

Ŝ(t|xi)

Ŝ(T̃i|xi)
+

{0− Ŝ(t|xi)}2
(
1− Ŝ(t|xi)

Ŝ(T̃i|xi)

)}]
.

Here Ĝ(·) is the Kaplan-Meier estimator of G(u) ≡ Pr(C ≥
u) under the assumption that C is independent of x. We
may replace Ĝ(·) by an estimate for Pr(C ≥ u|x) obtained
through regressing C over x to allow for covariate-dependent
censoring.

4. SIMULATION STUDY

We conducted simulation studies to evaluate the finite-
sample performance of the proposed method. We consid-
ered data scenarios with L = 2 or 3. We generated a
two-dimensional baseline covariate vector x = (x1, x2),
where x1 is a binary Bernoulli(0.5) random variable and
x2 is a continuous Uniform(0, 1) random variable. Then
the latent class label vector ξ was generated from a
Multinomial(1, {p1(x;α), . . . , pL(x;α)}T ) distribution fol-
lowing model (2). Given ξ, the time-to-event T was gener-
ated from the class-specific distribution function FT (t|ξl =
1) = 1 − exp{0.1(1 − et) exp(zT

l γ)} (l = 1, . . . , L) which
satisfied model (1) with Λ0(t) = 0.1(et − 1). Then we gen-
erated independent censoring time C as the minimum of an
Exponential(r) variable and a Uniform(5, 6) variable.

Supplementary Table S.1 summarizes the choice of r, α
and γ in five simulation scenarios. Among scenarios with
L = 2 (i.e., (I), (II), (III), and (IV)), scenario (I) served
as a benchmark with relatively light censoring rate and less
overlapped survival distributions among the two classes. In
contrast, scenario (II) involved more overlapped survival dis-
tributions while heavy censoring is present in scenario (III).
Scenario (IV) considered a special situation where covari-
ate x1 had a large effect size on class probability pl(x;α)
but zero covariate effect on survival, while x2 had zero co-
variate effect on latent class probability but a large effect
size on survival. Compared to scenario (I), scenario (IV)
had slightly heavier censoring but with similar level of over-
lapping of the survival distributions among the two classes.
Scenario (V) concerned three latent classes and was compa-
rable to scenario (I) in terms of censoring and the overlap-
ping among class-specific survival distributions. Empirical
metrics of censoring and overlapping among classes for the
five scenarios can be found in Supplementary Table S.2.
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Table 1. Median bias (M.Bias), standard deviation (SE), median standard error estimate (SEE), and coverage probability

(CP) of parameters α̂2,2, ζ̂1,1, â2 and Λ̂(3) out of 10000 simulations. Profile likelihood variance estimation approach was used

for α̂2,2, ζ̂1,1, and â2. Analytical approach based on observed-data log-likelihood was used for Λ̂(3)

n Scenarios α̂2,2 ζ̂1,1

M.Bias SE SEE CP M.Bias SE SEE CP
1000 (I) -0.020 0.302 0.296 0.949 -0.024 0.199 0.201 0.956
1000 (II) -0.007 0.522 0.500 0.945 -0.045 0.318 0.314 0.958
1000 (III) -0.037 0.410 0.380 0.936 -0.063 0.427 0.403 0.963
1000 (IV) 0.010 0.665 0.696 0.968 -0.011 0.205 0.207 0.952
1000 (V) 0.039 0.581 0.515 0.908 -0.042 0.236 0.216 0.938
2000 (V) 0.034 0.389 0.371 0.929 -0.022 0.151 0.146 0.946
3000 (V) 0.036 0.311 0.305 0.940 -0.014 0.121 0.118 0.946

â2 Λ̂(3)

M.Bias SE SEE CP M.Bias SE SEE CP
1000 (I) 0.011 0.449 0.412 0.940 -0.010 0.351 0.344 0.951
1000 (II) 0.032 0.451 0.406 0.926 0.003 0.545 0.504 0.949
1000 (III) 0.016 0.733 0.616 0.914 -0.018 0.759 0.661 0.942
1000 (IV) 0.002 0.310 0.309 0.954 0.016 0.481 0.449 0.945
1000 (V) -0.256 1.160 0.787 0.791 0.117 0.585 0.520 0.910
2000 (V) -0.122 0.828 0.628 0.872 0.062 0.390 0.367 0.925
3000 (V) -0.074 0.631 0.534 0.932 0.038 0.315 0.298 0.927

4.1 Parameter estimation

To evaluate parameter estimation, we conducted 10,000
simulations with sample size n = 1000 under scenarios (I)-
(IV) and sample sizes n = 1000, 2000 and 3000 under
scenario (V). To initialize the algorithm, we used a per-
turbed Ê(ξ) from the true latent class labels ξ. In addi-
tion, the variance estimation for {α̂T , γ̂T }T was conducted
using both the profile likelihood and the analytical ap-
proaches, while the variance estimation for Λ̂(·) was con-
ducted using the analytical approach. We considered an
outlying estimate as non-convergent if its L2 norm (i.e.,√

‖α̂−α0‖2 + ‖γ̂ − γ0‖2) was greater than the median L2

norm (out of 10,000 simulation runs) plus 5 times median
absolute deviation (MAD). Supplementary Table S.2 dis-
plays the estimation convergence rate along with median
standardized entropy index and median censoring rate un-
der different simulation scenarios. Supplementary Table S.2
indicates that the convergence rates are generally acceptable
in all settings.

The simulation results on the estimates for the four rep-
resentative parameters, α2,2, ζ1,1, a2, and Λ(3), are shown in
Table 1. Full estimation results for all unknown parameters
are available in supplementary Tables S.3 and S.4, which
also compares the two variance estimation approaches for α̂
and γ̂. We observe that under scenarios (I) and (IV), the
proposed estimator achieved very small median biases and
accurately estimated standard errors. The coverage prob-
abilities of the 95% confidence intervals are close to 0.95
for both regression coefficients α0 and γ0 and the infinite-
dimensional baseline cumulative hazard Λ0(t). We also note
that, compared to scenarios (I) and (IV), a fuzzier mixture

pattern of distributions in scenario (II) and heavier cen-
soring in scenario (III) may result in larger median biases
for most parameters. In addition, slight underestimation of
the standard errors is observed for scenario (II) and sce-
nario (III). That is, the empirical coverage probabilities are
slightly lower than 0.95, in particular for a2. For scenario
(V) with three latent classes, unstable estimation may oc-
cur with the smaller sample size 1000, as reflected by the
higher estimation biases for parameters a2 and a3 and re-
gression parameters ζ21 and ζ22 as compared to those given
the larger sample sizes 2000 or 3000. This observation sug-
gests that recovering the information on a larger number of
latent classes may warrant a larger sample size. In scenarios
(I)-(IV), the two variance estimators behave similarly, both
achieving satisfactory standard error estimation and cover-
age probabilities for all unknown parameters. In scenario
(V) with sample size 1000, both approaches yield empirical
coverage probabilities considerably lower than the nominal
value for some parameters, such as a2 and a3. However, the
under-coverage issue is resolved with increased sample sizes
very quickly by the profile likelihood approach but rather
slowly by the analytical approach. This may suggest bet-
ter finite-sample performance of the profile likelihood based
variance estimation as compared to the analytic variance
estimation.

We repeated the above simulations with non-informative
initial values, Ê(ξil) = 1/L (i = 1, . . . , n, l = 1, . . . , L). The
results are presented in Supplementary Tables S.5-S.7, indi-
cating similar performances to that shown in Table 1. This
demonstrates the robustness of the proposed E-M algorithm
to different initial values.
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Figure 1. Percentage of latent classes selected by different model selection criteria out of 1000 simulations under simulation
scenarios (I)-(V).

4.2 Selecting the number of latent classes

We further conducted 1000 simulations for each of the
five simulation scenarios with sample size n = 1000. Given
each simulated dataset, we fitted the assumed latent class
PH model with the proposed E-M algorithm initiated by
K-means clustering, and then applied the four data-driven
criteria, AIC, BIC, the standard entropy index, and the in-
tegrated complete-data likelihood BIC (ICL-BIC), to select
L among the candidate values, {2, 3, 4, 5}. Figure 1 shows
the empirical percentages of selecting each candidate value
of L by the different selection criteria.

As shown in Figure 1, BIC correctly selected L in all
1000 simulations when the two latent classes are well sepa-
rated (see scenario (I)), even with heavily censoring (see sce-
nario (III)). BIC also performed well under heavy distribu-
tion overlapping (see scenario (II)), with separated covariate
effects on survival and marginal latent class probability (see
scenario (IV)), and with three latent classes (see scenario
(V)). Compared to BIC, AIC tended to select a larger num-
ber of latent classes, particularly for the heavy distribution
overlapping scenario (see scenario (II)). In terms of entropy-
based criteria, we find that the standardized entropy index
tended to select incorrect L, and accordingly ICL-BIC per-
formed worse than the stand-alone BIC. Similar results were
also observed when there were three latent classes in scenario
(V). The superiority of BIC over entropy-based criteria may
relate to the fact that the proposed method is a likelihood-
based method. Based on our simulation results, we recom-
mend using BIC to select L when applying the proposed
method.

4.3 Assessing prediction performance

For each of the five simulation scenarios, we further sim-
ulated 1000 datasets with sample size 1000. For each simu-
lated dataset, we conducted five-fold cross-validation to as-
sess the survival prediction performance of the proposed
latent class PH regression and the standard PH regres-
sion. Specifically, we fit models on the training dataset,

and estimate the Brier Score B̂S
(f)

j (t) (j = 1, 2) based on
the testing set, where f indicates one of the five random
folds (f = 1, . . . , 5). Then we compute the average Brier

score B̂Sj(t) = 1
5

∑5
f=1 B̂S

(f)

j (t) for a range of t’s within
the time interval [0, t∗]. We set the upper bound of time
interval t∗ = 5 for scenarios (I)–(IV) and t∗ = 5.75 for
scenarios (V) to cover the support of the generated event
times.

Supplementary Figures S.1-S.5 plot the estimated Brier
Scores over time under scenarios (I)-(V), respectively. In
all simulation scenarios, the proposed latent class PH re-
gression analysis consistently achieved lower median av-
erage Brier Score estimates as compared to the standard
PH regression which ignores the existence of latent classes.
While the improvement in survival prediction is rather mi-
nor under scenarios (I), (II), (III) and (V), we observe
quite major improvement under scenario (IV), particularly
for the survival prediction at early time points. Note that
under scenario (IV), covariates have different effects on
the latent class probability and class-specific survival. The
large difference in prediction error in this setting suggests
that the standard PH regression analysis may have inad-
equate capacity to capture such complex data heterogene-
ity.

5. REAL DATA EXAMPLE

We applied our method to a subset of the Uniform Data
Set, which included 5348 patients who were followed-up
between September 2005 and June 2015 by the National
Alzheimer’s Coordinating Center. The goal of our analyses
is to understand potential subtypes of MCI directly linked
to the heterogeneity in the time to the onset of dementia. In
this dataset, 1501 patients developed dementia during the
follow-up, resulting in a censoring rate of 72%. The censor-
ing occurred mostly due to reasons such as moving out of
area, and hence we deem the random censoring assumption
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Table 2. Point estimates and 95% confidence intervals for the covariate effects obtained by Cox model and the latent class
model with two classes for the MCI data application

Cox model Latent class model (2 classes)
(1 class) Class probability Class-specific survival submodel

Domains Covariates ζ̂ 95% CI α̂ 95% CI ζ̂1 95% CI ζ̂1 + ζ̂2 95% CI

Intercept NA NA -2.94∗ (-5.00,-0.88) NA NA 2.03∗ (1.26,2.80)

Overall cognition MMSE -0.12∗ (-0.15,-0.10) -0.17 (-0.40, 0.07) -0.14∗ (-0.21,-0.07) -0.09∗ (-0.16,-0.03)

Executive TB 0.08∗ (0.05,0.12) 0.20∗ ( 0.00, 0.40) -0.01 (-0.14, 0.11) 0.12∗ (0.04,0.19)
function DS -0.11∗ (-0.17,-0.05) -0.77∗ (-1.28,-0.26) 0.03 (-0.20, 0.26) -0.17∗ (-0.30,-0.03)

Memory
LMD -0.41∗ (-0.46,-0.35) 0.23 (-0.40, 0.86) -0.63∗ (-0.80,-0.46) -0.27∗ (-0.39,-0.15)
CF -0.21∗ (-0.27,-0.14) -0.74 (-1.73, 0.26) -0.17 (-0.36, 0.02) -0.13 (-0.29,0.03)

Language BN -0.03∗ (-0.06,0.00) 0.35∗ ( 0.15, 0.55) -0.17∗ (-0.26,-0.07) 0.04 (-0.07,0.15)

Attention
TA -0.04∗ (-0.08,0.00) -0.15 (-0.49, 0.19) -0.10 (-0.21, 0.01) 0.01 (-0.07,0.10)
DSF 0.05 (-0.00,0.10) 0.06 (-0.32, 0.44) 0.01 (-0.11, 0.13) 0.07 (-0.10,0.25)

Cerebrovascular EH -0.02 (-0.23,0.18) -1.10 (-2.53, 0.34) 0.39 (-0.16, 0.93) -0.11 (-0.55,0.33)

Functional abilities IADLs 0.12∗ (0.10,0.14) 0.40∗ ( 0.03, 0.76) 0.21∗ ( 0.14, 0.28) 0.03 (-0.05,0.10)

Behavioral NPI-Q 0.06∗ (0.04,0.09) 0.19 (-0.17, 0.55) 0.11∗ ( 0.03, 0.19) 0.00 (-0.08,0.08)
assessment GDS 0.07 (-0.07,0.21) -0.70 (-2.03, 0.62) 0.09 (-0.33, 0.50) 0.12 (-0.30,0.55)

Aging AGE 0.27∗ (0.20,0.33) 0.90∗ ( 0.39, 1.42) 0.38∗ ( 0.20, 0.56) 0.01 (-0.20,0.22)

*Statistically signficant covariate effect based on 95% confidence interval.
Higher scores on TB and TA indicated worse conditions.

as reasonable for this dataset. We fit the model given by (1)
and (2) with covariates that measure various baseline cogni-
tive characteristics, including overall cognition (Mini-mental
state examination, MMSE), executive functions (Trail mak-
ing test B, TB, and Digit symbol, DS), memory (logical
memory delayed, LMD, and category fluency, CF), language
(Boston naming, BN), and attention (Trail making test A,
TA, and digit span forward, DSF). All the cognitive scores
were normed based on age, race, and educational attain-
ment. In addition, baseline number of impaired instrumen-
tal activities of daily living (IADLs), number of neuropsy-
chiatric symptoms (NPI-Q), binary measure of depression
(GDS), indicator of cerebrovascular disease (EH), and base-
line age centered at 75 years (AGE) were also included as
covariates in our models. A more detailed descriptions of
this dataset can be found in [10].

We first determined the number of latent classes L for
our latent class PH analysis. As suggested by the simulation
studies, we employed BIC as the data-driven criterion to
select L. The 2-class model yielded the smallest BIC, 24481,
as compared to the 3-class model which yielded BIC= 24625
and the 4-class model which yields BIC = 24797. By these
results, we selected L = 2.

In Table 2, we present the parameter estimates along with
the corresponding 95% confidence intervals which were ob-
tained from fitting the model given by (1) and (2) with
L = 2 or fitting the standard PH regression model. Based
on the results from the standard PH regression (see ζ̂ in Ta-
ble 2), we see that patients with worse baseline conditions
in different cognitive domains (executive function, memory,

language and attention), functional abilities, behavioral fea-
tures and aging tended to have increased risk, or earlier
onset, of dementia. However, these results do not directly
reveal a finite number of potential MCI subtypes pertaining
to the progression to dementia.

The proposed latent class PH regression analyses can
help fill in this gap. Specifically, the parameter estimates for
model (2) (see α̂ in Table 2) suggest that younger MCI pa-
tients with more severe problems in language domain (BN)
were more likely to belong to the latent class 1, while older
MCI patients with worse executive functions (TB and DS)
and impaired functional abilities (IADLs) were more likely
to be belong to class 2. The parameter estimates for the
class-specific survival model (1) help delineate the hetero-
geneity in covariate effects on time-to-dementia between
the two latent classes (see ζ̂1 and ζ̂1 + ζ̂2 in Table 2).
We first note that for both classes, worse baseline over-
all cognition (MMSE) is statistically significantly associated
with higher risk of developing dementia. In addition, mem-
ory loss (LMD) has a significant effect within both classes
but its effect sizes are fairly different. In addition, the ef-
fects of worse executive functions (TB and DS) are statis-
tically significant only for class 2, while problems in lan-
guage domain (BN), functional abilities (IADLs), behaviors
(NPI-Q) and age (AGE) have significant effects on time-
to-dementia only for class 1. Combing these results, we are
able to correspond the two data-driven classes to meaning-
ful clinical MCI subgroups. Patients in class 1 tended to
be younger with milder baseline impairment and are prone
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Table 3. Summary statistics of the survival outcome and
baseline covariates for the two MCI latent classes, based on

modal assignment of class identity.

Class 1, N=37141 Class 2, N=16341

T̃ 1.8 (0.0, 3.4) 1.1 (0.0, 2.1)
Δ2 683 (18%) 818 (50%)
MMSE -0.99 (-2.2, 0.0) -2.1 (-3.8, -0.9)
TB4 0.4 (-0.2, 1.4) 1.7 (0.5, 4.0)
DS -0.5 (-1.2, 0.1) -1.4 (-2.0, -0.8)
LMD -1.2 (-2.1, -0.4) -1.5 (-2.3, -0.7)
CF -0.8 (-1.4, -0.1) -1.3 (-1.9, -0.7)
BN -0.6 (-1.9, 0.2) -0.5 (-1.6, 0.3)
TA3 0.1 (-0.4, 0.9) 0.7 (-0.1, 1.7)
DSF -0.3 (-0.9, 0.5) -0.4 (-1.0, 0.4)
EH 224 (6.0%) 104 (6.4%)
IADLs 1 (0, 2) 4 (2, 6)
NPI-Q 1 (0, 2) 2 (1, 4)
GDS 694 (19%) 279 (17%)
AGE -0.2 (-0.8, 0.4) 0.2 (-0.4, 0.8)

1 Median (IQR); n (%)
2 Number of patients diagnosed with dementia
3 Larger TB and TA scores indicate worse conditions.

to a wider range of baseline risk factors including memory,
language, functional abilities, and behavioral assessment do-
mains. This suggests a more diverse manifestation of dis-
ease progression for the MCI patients in class 1. In con-
trast, class 2 were comparably older patients who exhibited
amnestic impairment at baseline, with executive function
and memory domains as the only risk factors, which may
correspond to the typical phenotypes of Alzheimer’s Dis-
ease.

Based on the estimation results, we assigned each patient
to one of the two latent classes according to the modal rule.
That is, we assigned patient i to the class associated with
the highest posterior membership probability Ê(ξil). This
led to 69% of the patients assigned to class 1 and 31% of
the patients assigned to class 2. Table 3 summarizes patient
characteristics by the latent class assignment. Comparing
the two classes, patients in class 1 have higher MMSE com-
pared to those in class 2, showing better overall cognitive
status. Moreover, class 1 is generally better than class 2 in
most of the domain-specific scores, except for the Boston
Naming test attached to the language domain. In addition,
patients in class 2 are older than those in class 1. In terms of
time-to-dementia, patients in class 1 generally show slower
progression to dementia than patients in class 2. This is
consistent with the observation that only 18% of patients in
class 1 developed dementia in contrast to half of patients in
class 2.

We also assessed the goodness-of-fit of our latent class
PH models by comparing the empirical Kaplan-Meier curve
of time-to-dementia versus the estimated overall survival

Figure 2. Blue dashed and dotted lines (Class 1 and Class 2):
Estimated class-specific survival probabilities by the latent
class model. Blue solid line (Overall): Estimated overall

survival probability by the latent class model. K-M: Estimated
Kaplan-Meier curve for overall survival probability.

function based on models (1) and (2), which was calculated
as n−1

∑n
i=1 Ŝ(t|xi). As shown in Figure 2, the empirical

Kaplan-Meier curve (referred to as “K-M”) is very close to
the estimated survival curve based on the proposed models
(referred to as “Overall”), indicating reasonable goodness-
of-fit of the two-class PH regression model to the MCI
dataset. In Figure 2, we also plot the estimated class-specific
survival functions,

∑n
i=1 I(i ∈ Cl)Ŝ(t|xi)/

∑n
i=1 I(i ∈ Cl),

where Cl denotes the set of patients assigned to class l
(l = 1, 2). We see that the estimated survival curve for class
1 is higher than the curve for class 2, indicating that pa-
tients in class 1 had slower progression towards dementia.
This result is consistent with the observation from Table 3.

We compared the predictive performance of the proposed
latent class PH regression versus the standard PH regres-

sion using the estimated Brier Scores B̂S1(t) and B̂S2(t)
for t ∈ (0, 8] computed via 5-fold cross-validation. Figure 3
shows that the proposed latent class PH regression achieved
lower Brier Scores than the standard PH regression. This ev-
idences a gain in survival prediction accuracy from properly
accounting for the heterogeneity across latent classes.

6. DISCUSSION

In this work, we propose a semi-parametric approach to
conducting latent class PH regression, which can lead to
improved understanding of heterogeneous survival data and
generate useful scientific implications. Our numerical stud-
ies consistently suggest empirical gains in survival prediction
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Figure 3. Average of 5-fold cross-validated Brier Scores, B̂Sj(t), j = 1, 2, obtained by the Cox model and the proposed latent
class model with L = 2, for the MCI data application.

benefited from properly accounting for survival heterogene-
ity across latent classes. This justifies a recommendation of
considering latent class PH regression as a useful comple-
mentary analysis of survival data in practice. We develop
an efficient and stable E-M algorithm which has a solid the-
oretical underpinning from the general NPMLE framework.
The algorithm is efficiently implemented in Rcpp [7] format
and is publicly available as an R package.

In our work, the class-specific baseline hazard functions
are assumed to be proportional to each other. To assess the
method’s robustness when the proportionality assumption
is violated, we conducted an additional simulation study as
described in Appendix B, and the results are shown in sup-
plementary Table S.8 and Figure S.6. As observed, when
the proportionality assumption is violated, the proposed
method can still reasonably delineate survival heterogene-
ity across latent classes and achieve better predictive per-
formance compared to the standard Cox regression.

It is worth mentioning that the proposed latent class
PH regression framework can be extended to handle time-
dependent covariates with delicate modifications to the
complete data likelihood and the corresponding algorithm.
When competing risks are present in addition to random
censoring to the event time outcome, the proposed method
is still applicable as long as regression coefficients are prop-
erly interpreted as covariate effects on cause-specific hazard.
The proposed work is confined to handle a finite number
of covariates. Extensions for handling survival data with a
large number of covariate merit future research.
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SUPPLEMENTARY MATERIALS

Web Appendices A–D, referenced in Section 3 and 6, Sup-
plementary Tables S.1–S.8, Supplementary Figures S.1–S.6,
and the corresponding R package, are available with this pa-
per online at http://intlpress.com/site/pub/files/ supp/sii/
2024/0017/0001/sii-2024-0017-0001-s002.pdf.
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[25] Proust-Lima, C., Séne, M., Taylor, J. M. and Jacqmin-

Gadda, H. (2014). Joint latent class models for longitudinal and
time-to-event data: A review. Statistical Methods in Medical Re-
search 23 74–90. MR3190688

[26] Rosen, O. and Tanner, M. (1999). Mixtures of proportional haz-
ards regression models. Statistics in Medicine 18 1119–1131.

[27] van der Vaart, A. and Wellner, J. A. (1996). Weak Conver-
gence and Empirical Processes. Springer. MR1385671

[28] Winblad, B., Palmer, K., Kivipelto, M., Jelic, V.,
Fratiglioni, L., Wahlund, L.-O., Nordberg, A., Bäckman, L.,
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