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Abnormal sample detection based on robust
Mahalanobis distance estimation in adversarial
machine learning∗

Wan Tian, Lingyue Zhang, and Hengjian Cui
†

This paper addresses the problem of abnormal sample
detection in deep learning-based computer vision, focusing
on two types of abnormal samples: outlier samples and ad-
versarial samples. The presence of these abnormal samples
can significantly degrade the performance and robustness
of deep learning models, posing security risks in critical ar-
eas. To address this, we propose a method that combines
robust Mahalanobis distance (RMD) estimation with a pre-
trained convolutional neural networks (CNNs) model. The
RMD estimation involves using minimum covariance ma-
trix determinant (MCD), T -type, and S estimators. Fur-
thermore, we theoretically analyze the breakdown point and
influence function of the T -type estimator. To evaluate the
effectiveness and robustness of our method, we utilize pub-
lic datasets, CNN models, and adversarial sample generation
algorithms commonly employed in the field. The experimen-
tal results demonstrate the effectiveness of our algorithm in
detecting abnormal samples.

AMS 2000 subject classifications: Primary 62H30,
62G35; secondary 62H35.
Keywords and phrases: Abnormal sample detection,
MCD estimator, T -type estimator, Breakdown point, Influ-
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1. INTRODUCTION

Deep learning models in various fields, such as natural
language processing [25], recommender systems [6], com-
puter vision [11], fraud and malware detection [29], finance
[13], and autonomous driving [33], have made significant ad-
vancements in recent years. The improvements in hardware
computing power and the availability of large-scale data
have contributed to these advancements. In computer vi-
sion, tasks such as object detection [44], instance segmen-
tation [12], image classification [11], and semantic segmen-
tation [4] have achieved state-of-the-art performance using
CNNs. In some cases, CNNs have even surpassed human
performance [22].

∗This paper is for the special issue celebrating Professor Lincheng
Zhao’s 80th birthday.
†Corresponding author.

Figure 1. Example of adversarial sample generation. By
adding subtle disturbances to the image, “panda” was
mistakenly classified as “gibbon” with great confidence.

(Image Credit: [9]).

In 2013, a “counter-intuitive” phenomenon was discov-
ered by Szegedy et al. [39] in the field of computer vision.
They observed that adding an imperceptible disturbance to
an original image x, specifically using sign(∇xJ(θ,x, y)),
could generate a new sample x′ = x + sign(∇xJ(θ,x, y))
that can cause a deep learning model to confidently misclas-
sify it. These new samples are known as adversarial samples.
Figure 1 provides an illustration of an adversarial sample.

The assailant orchestrates a manipulation of the in-
put sample by artfully constructing a subtle perturbation,
thereby inducing the image recognition system, which relies
on deep neural networks, to yield erroneous outcomes. These
samples, triggering misclassification within the deep learn-
ing system, are commonly referred to as adversarial samples.
The precise definition is as follows:

Adversarial examples definition [43]: Adversarial exam-
ples are inputs to machine learning models that an at-
tacker intentionally designed to cause the model to make
mistakes.

Adversarial examples are not confined to images; they also
exist in other domains, including text and speech. Modify-
ing different aspects in these domains can similarly lead to
misclassification. For instance, altering an edge in a graph
CNN can cause a graph neural network to incorrectly match
nodes [8], while modifying a segment of text can result in
text classification errors [24]. An illustrative example is pro-
vided below.

https://www.intlpress.com/site/pub/pages/journals/items/sii/_home/_main/index.php


Figure 2. Use the dataset MNIST to train a handwritten digit
recognition system. (a) in-distribution sample with the correct

label, (b) OOD with label belonging to {0, 1, 2, . . . , 9},
(c) in-distribution sample with the wrong label.

Original text: South Africa’s historic Soweto town-
ship marks its 100th birthday on Tuesday in a mood of
optimism.=⇒ classification: 57% World

Adversarial text: South Africa’s historic Soweto town-
ship marks its 100th birthday on Tuesday in a mooP of
optimism.=⇒ classification 95% Sci/Tech

Adversarial machine learning (AML) has emerged as a cru-
cial area of research to tackle the security challenges posed to
machine learning systems [19]. The significance of this field
lies in the development of robust and effective defense mech-
anisms against adversarial attacks. In response to these chal-
lenges, the adoption of Bayesian perspectives is proposed as
a promising approach to bolster the resilience of ML models,
providing a foundation for enhanced security measures.

In addition to adversarial examples, the performance of
deep learning models can also be influenced by Out-of-
Distribution (OOD) samples [14]. Consider a scenario where
a training set for a handwritten digit recognition system, uti-
lizing the MNIST dataset and a CNN, includes non-digit im-
ages (such as animal images) or images with incorrect labels.
This incorporation of OOD samples can have a substantial
impact on the model’s performance. An example of an OOD
sample is depicted in Figure 2. The presence of adversarial
examples and outliers highlights the fragility and instabil-
ity of deep learning models [39]. In the current era, with
the widespread utilization of deep learning technology, par-
ticularly in safety-critical domains like autonomous driving
and intelligent medical diagnosis [28], accurately determin-
ing whether a sample is abnormal or in-distribution before
feeding it into the deep learning system becomes paramount.

The defense against adversarial samples in computer vi-
sion can be categorized based on two factors: the defense
objective and the defense approach [31]. These two classi-
fication methods can be further divided as follows. Defense
objective: (a) Proactive defense: This type of defense pri-
marily focuses on the training stage, aiming to minimize
the impact of adversarial samples on the model’s training
process. The objective is to ensure that the model becomes

more robust against adversarial attacks. (b) Reactive de-
fense: In this case, the objective is to assess samples before
they enter the model, preventing abnormal samples from be-
ing fed into the deep learning system. If a sample is classi-
fied as normal, it will proceed through the machine learning
system; otherwise, further processing will be implemented.
The defense approach can encompass a variety of strate-
gies including gradient masking, auxiliary detection models,
statistical methods, preprocessing techniques, classifier inte-
gration techniques, adversarial training, and defensive distil-
lation. Although currently deployed defenses against abnor-
mal samples have yielded certain positive results, numerous
limitations and challenges persist. These include factors like
protracted training times, the presence of a large number of
adversarial samples, the challenge of concurrently detecting
outliers and adversarial samples, and the limited capacity to
defend against specific types of adversarial samples. These
complexities emphasize the need for ongoing research to ad-
vance methods of defense against abnormal samples.

Currently, several effective adversarial detection algo-
rithms have been proposed in the literature. Hendrycks and
Gimpel [14] introduced the use of the maximum value of the
posterior distribution of a classifier to detect outlier samples.
Their approach also involved processing the input and out-
put of the deep learning model to enhance its performance.
Ma et al. [30] proposed the utilization of local intrinsic di-
mensionality (LID) for outlier sample detection. Meanwhile,
Lee et al. [26] employed a softmax classifier based on the
Mahalanobis distance and pre-trained CNN models to de-
tect both adversarial and outlier samples. More details can
be found in [31] and the references therein. The method
proposed by Lee et al. [26] based on Mahalanobis distance
has been supported by numerous experiments. However, Lee
et al. [26] did not consider the presence of outliers in the
dataset, which can greatly impact the estimation of Maha-
lanobis distance. In this paper, we propose to make Maha-
lanobis distance robust by using three robust estimators and
demonstrate its advantages in various scenarios.

The organization of the paper is as follows. In Section 2,
we introduce common adversarial example generation algo-
rithms and the datasets used in the experiments. Section 3
presents two robust estimators along with their correspond-
ing breakdown point theory and bounded influence function
properties. Section 4 validates the effectiveness of the pro-
posed method through extensive experiments on outlier de-
tection and adversarial detection. Finally, Section 5 provides
a comprehensive summary of the article.

2. PRELIMINARIES

2.1 Adversarial sample generation
algorithms

The key information in a machine learning system in-
cludes the architecture of the machine learning model, train-
ing data, optimization algorithms and strategies, and the
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loss function. Depending on the level of knowledge the at-
tacker possesses about this information, attacks can be cat-
egorized into White-Box attacks, Black-Box attacks, and
Gray-Box attacks.

White-box attacks In a white-box attack scenario, the at-
tacker possesses complete knowledge about the target ma-
chine learning system, including its architecture, gradients,
loss function, and other relevant information. This advan-
tage enables the attacker to efficiently generate adversar-
ial samples to subvert the machine learning system. How-
ever, for security reasons, white-box attacks are considered
improbable in real-world scenarios. Nonetheless, developing
effective defense mechanisms against white-box attacks re-
mains an open and challenging research problem [42].

Black-box attacks In a black-box attack scenario, the at-
tacker lacks any access or knowledge about the machine
learning system. The attacker can only interact with the ma-
chine learning system by inputting data and observing its
outputs. Based on these outputs, the attacker can infer the
underlying architecture of the machine learning system and
construct an auxiliary model to generate adversarial sam-
ples for attacking the system. Black-box attacks are preva-
lent in real-world applications since organizations typically
do not expose their machine learning systems to external
parties [43].

Gray-box attacks Gray box attacks are alternatively re-
ferred to as Semi-White Box attacks. In the context of Gray-
Box attacks, the assailant possesses the capability to ac-
cess machine learning information, yet remains uninformed
about the defensive strategies employed by the machine
learning system. Gray-Box attacks serve as a middle-ground
approach to assess the security of machine learning systems,
as they pose significantly greater risks compared to Black-
Box attacks [43].

In adversarial sample detection, we mainly consider the
following methods of adversarial sample generation: fast gra-
dient sign method (FGSM) [9], basic iterative method (BIM)
[23], DeepFool [34] and Carlini-Wagner (C&W) [3]. FGSM is
a single-step, fast adversarial sample generation algorithm,
formulated as

x′ = x+ εsign
(
∇xL(θ,x, y)

)
, non-target,

x′ = x+ εsign
(
∇xL(θ,x, y)

)
, target on y.

(1)

Target attack (1) is equivalent to

minL
(
θ,x′, y

)
, s.t.

∥∥x′ − x
∥∥
∞ ≤ ε and x′ ∈ [0, 1]m,

where L and ε respectively represent the loss function and
magnitude of disturbance. Because FGSM only needs one
back propagation process to quickly generate adversarial
samples, FGSM is widely used in scenarios that require a
large number of adversarial examples such as adversarial
training. Figure 1 shows the adversarial samples generated

Figure 3. F1(F2 or F3) is the decision hyperplane of Classes
4 and 1 (2 or 3). DeepFool finds the best path to cross F1

and misclassifies x. (Image Credit: [34].)

by FGSM based on ImageNet [38]. BIM [23] is an iterative
version of FGSM [9]. The iterative process of generating ad-
versarial samples x′ is as follows:

x0 = x, xt+1 = Clipx,ε
(
xt + αsign

(
∇xL(θ,xt, y)

))
,

where Clip represents project sample x′ into the Bε(x) =
{x′ : ‖x′−x‖∞ ≤ ε} sphere of x, α denotes the step size, and
t represents the number of iterations. When x is initialized
randomly, BIM and projected gradient descent (PGM) are
equivalent. C&W [3] is to counter the effective defensive
strategy for FGSM [9] and L-BFGS [40], and its adversarial
samples generation process is

min
∥∥x− x′∥∥2

2
+ af

(
x′, y

)
, s.t. x′ ∈ [0, 1]m,

where f(x′, y) = (maxi �=y Z(x′)i − Z(x′)y)
+, minimizing

f(x′, y) will result in sample x′ being classified into Class
y with the highest score. Hyperparameter a is obtained by
line search. DeepFool [34] studies the decision hyperplane
around the sample x and finds the best path beyond the hy-
perplane, so that the sample is misclassified. Figure 3 shows
an example of DeepFool.

The decision boundary of Classes 3 and 4 is F3 = {x :
F (x)4 − F (x)3 = 0}. Let f(x) = F (x)4 − F (x)3 = 0, and
perform Taylor expansion at x0,

F ′
3 =

{
x : f(x) ≈ f(x0) +∇�

x f(x0)(x− x0)
}
.

DeepFool calculates the orthogonal vector w from x0 to F ′
3

and moves the sample x along the direction w to generate
the adversarial sample x′

0. DeepFool experiments show that
most of the samples are located near the decision boundary.
Using MNIST to train LeNet [41], almost 90% of the test
samples will be attacked by DeepFool, which shows that the
deep learning algorithm is not robust.

2.2 Datasets

Since this paper primarily addresses the attack and de-
fense of adversarial examples in computer vision, this sub-
section briefly introduces the benchmark datasets employed
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Table 1. Basic description of the datasets

Dataset Training size Test size Classes Figure size

CIFAR-10 50000 10000 10 32× 32
CIFAR-100 50000 10000 10 32× 32

SVHN 73257 26032 10 32× 32
LSUN \ 10000 10 32× 32

TinyImageNet \ 10000 200 32× 32

for evaluating algorithms. The datasets considered for eval-
uation are CIFAR-10, CIFAR-100, TinyImageNet, SVHN,
and LSUN. Table 1 provides a basic description of these
datasets. The paper does not utilize the LSUN and Tiny-
ImageNet datasets for training the model. Therefore, there
is no specific training set mentioned. As for the test set,
it consists of only 10,000 images selected from the original
dataset. Furthermore, all the images used in the paper un-
dergo scaling to a size of 32× 32.

3. PROPOSED METHODS

Let X be an input, Y = {1, 2, 3, . . . , C} be its label set
and D =: {((x1, y1), . . . , (xn, yn)) : xi ∈ X , yi ∈ Y , 1 ≤
i ≤ n}. For a pre-trained neural network model as a feature
extractor, we use the following softmax classifier

P (y = c|x) = exp(w�
c f(x) + bc)∑

c′∈Y exp(w�
c′f(x) + bc′)

, x ∈ X , y ∈ Y

to validate the accuracy of the pre-trained neural network
features, where w�

c and bc represent the weight vector and
bias of Class c, respectively, and f(x) is the output of the
penultimate layer before softmax.

It is worth noting that, under the Gaussian assumption,
the conditional distribution of f(x) given y = c follows a
Gaussian distribution with a mean μc and a common co-
variance matrix Σ, denoted as N (μc,Σ). The prior proba-
bility of label y is defined as P (y = c) = bc∑

c′∈Y bc′
, where

bc represents the weight for label c and Y is the set of all
possible labels. Based on these assumptions, the posterior
probability of y = c given x can be expressed as:

P (y = c|x) = P (y = c)φ(f(x)|y = c)∑
c′∈Y P (y = c′)φ(f(x)|y = c′)

=
bc exp(−1

2 (f(x)− μc)
�Σ−1(f(x)− μc))∑

c′∈Y bc′ exp(−1
2 (f(x)− μc′)�Σ−1(f(x)− μc′))

=
exp(μ�

c Σ
−1f(x)− 1

2μ
�
c Σ

−1μc + log bc)∑
c′∈Y exp(μ�

c′Σ
−1f(x)− 1

2μ
�
c′Σ

−1μc′ + log bc′)
,

where φ(f(x)|y = c′) denotes the probability density func-
tion (PDF) of N (μc,Σ). Then, Gaussian discriminant anal-
ysis (GDA) can be considered equivalent to a softmax classi-
fier. Moreover, the classification procedure described above

can be implemented using the Mahalanobis distance,

y(x) = argmin
c

(
f(x)− μc

)�
Σ−1

(
f(x)− μc

)
,

which emphasizes the rationality and generality of classifi-
cation based on the Mahalanobis distance. Since the param-
eters μc and Σ are unknown, they are typically estimated
using the maximum likelihood estimation. To estimate these
parameters, the model can be trained using pre-trained fea-
tures, such as

μ̂c =
1

nc

∑
i:yi=c

f(xi),

Σ̂ =
1

n

∑
c∈Y

∑
i:yi=c

(
f(xi)− μ̂c

)(
f(xi)− μ̂c

)�
,

where nc = #{i : yi = c, 1 ≤ i ≤ n} and #A denotes the
cardinality of the set A. In [26], the confidence score based
on estimated Mahalanobis distance is defined as

K̂(x) =max
c

−
(
f(x)− μ̂c

)�
Σ̂−1

(
f(x)− μ̂c

)
=min

c

(
f(x)− μ̂c

)�
Σ̂−1

(
f(x)− μ̂c

)
.

(2)

In their work, Lee et al. [26] demonstrate the effective-
ness of abnormal sample detection using the Mahalanobis
distance through experiments. Denote Mahalanobis distance
(MD) of the ith observation (xi, yi = c) by

(3) MDi =
(
f(xi)− μ̂c

)�
Σ̂−1

(
f(xi)− μ̂c

)
.

Since (3) is a quadratic form, the lower 0.975th quantile of
Chi-square distribution with p degrees of freedom χ2

p,0.975 is
usually selected as the threshold to judge an outlier, i.e.{

xi is an outlier, MDi ≥ χ2
p,0.975,

xi is a in-distribution, MDi < χ2
p,0.975.

There are two problems for abnormal detection based on
Mahalanobis distance:

1. Masking problem: when there are outliers involved in
the estimation of the mean and the covariance, for
other outliers, there may not be a Mahalanobis distance
larger than the in-distribution sample;

2. Swamping problem: because both mean and covariance
matrix are involved in Mahalanobis distance, the ob-
servations with large Mahalanobis distance may be not
outliers.

Therefore, when utilizing the Mahalanobis distance for dis-
crimination, it becomes crucial to consider the robust es-
timation of the location and scale parameters (μ,Σ). This
paper recommends two robust estimators for (μ,Σ), which
are introduced in the following two subsections.
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3.1 The MCD estimator

There exist several methods for robust estimation of the
Mahalanobis distance in the literature. One such method is
the MCD estimator proposed by Rousseeuw [20]. The MCD
approach aims to select a sub-sample with a sample size
of h, where n/2 ≤ h < n, that minimizes the determinant
of the covariance matrix. However, due to its high compu-
tational complexity and limitations in computing power at
the time, the MCD method was not widely utilized. It was
not until the introduction of the fast-MCD algorithm by
Rousseeuw and Driessen [37] that the computational chal-
lenges associated with the MCD method were addressed.
The fast-MCD algorithm provides an efficient solution to
the MCD estimation problem. One of the key steps in the
fast-MCD algorithm is the C-step. To explain the MCD esti-
mators for the location and scale parameters of the dataset
Zn = {z1, z2, . . . , zn}� from a population Z of dimension
p, we consider the penultimate layer z at iteration t as an
example. Here, Ht ⊂ {1, 2, . . . , n} represents the selected
subset, and ht = #Ht denotes the number of elements in
Ht. Using maximum likelihood estimation

μ̂
(t)
MCD =:

1

ht

∑
i∈Ht

zi,

Σ̂
(t)
MCD =:

1

ht

∑
i∈Ht

(
zi − μ̂

(t)
MCD

)(
zi − μ̂

(t)
MCD

)�
,

(4)

if |Σ̂(t)
MCD| �= 0, for i ∈ Ht, define the relative distance as

follows

dt(i) =

√(
zi − μ̂

(t)
MCD

)�
Σ̂

(t)−1
MCD

(
zi − μ̂

(t)
MCD

)
,

where |Σ| denote the determinant of Σ. Then, take the fol-
lowing set Ht+1 to satisfy{

dt(i) : i ∈ Ht+1

}
=:

{
(dt)1:n, . . . , (dt)h:n

}
,

where (dt)1:n ≤ (dt)2:n ≤ · · · ≤ (dt)n:n. Next calculate

μ̂
(t+1)
MCD and Σ̂

(t+1)
MCD based on Ht+1, satisfying

(5)
∣∣Σ̂(t)

MCD

∣∣ ≥ ∣∣Σ̂(t+1)
MCD

∣∣.
Rousseeuw and Driessen [37] demonstrates that the equation

holds in (5), if and only if μ̂
(t)
MCD = μ̂

(t+1)
MCD , Σ̂

(t)
MCD = Σ̂

(t+1)
MCD .

The MCD estimator is known for its affine equivariance
[18]. This property states that for any non-singular matrix
A and constant vector b, the following relationships hold
true:

μ̂MCD(AZ + b) = Aμ̂MCD(Z) + b,

Σ̂MCD(AZ + b) = AΣ̂MCD(Z)A�.

This property implies that rotations, linear transforma-
tions, and scaling of the data will not affect the detection of
outliers when using the MCD estimator [18]. In other words,

the MCD estimator is robust to variations in the data’s lo-
cation, orientation, and scale.

The breakdown point [17] and influence function [5] are
important indicators to evaluate the robustness of an es-
timator. Croux and Haesbroeck [5] provides the influence
functions for the MCD location and scatter matrix estima-
tors at elliptically symmetric distributions F with stochastic
representation

(6) Z = μ+ rΣ1/2U

which has the density of the form

(7) |Σ|−1/2g
(
(z − μ)�Σ−1(z − μ)

)
,

where r denotes a nonnegative random variable independent
of U that is a p-dimensional random vector uniformly dis-
tributed on the unit hypersphere, and g is called density
generator.

Theorem 3.1 ([5]). Assume that g in (7) has a strictly
negative derivative g′. Let 0 < α < 1 be the mass of the data
not determining the MCD, and qα = G−1(1 − α), where G
is the CDF of z�z and z follows distribution F with μ = 0
and Σ = Ip. Then, the influence function of μ̂MCD is

IF (x, μ̂MCD, F ) = −1

2
c1xI

(
‖x‖2 � qα

)
,

where c1 = ( πp/2

Γ(p/2+1)

∫√
qα

0
rp+1g′(r2)dr)−1.

The influence function of the MCD estimator of the scat-
ter matrix is separated into expressions for diagonal and off-
diagonal elements.

IF (x, Σ̂ii,MCD, F )

=
1

b1

{
c2x

2
i I
(
‖x‖2 � qα

)
+

b2c2
b1 − pb2

‖x‖2I
(
‖x‖2 � qα

)
+

b1
b1 − pb2

(
c2

qα
p

(
1− α− I

(
‖x‖2 � qα

))
− 1

)}
,

IF (x, Σ̂ij,MCD, F ) =
xixj

−2c3
I
(
‖x‖2 � qα

)
, if i �= j,

where c2 = ( πp/2

Γ(p/2+1)

∫√
qα

0
rp+1g(r2)dr)−1, and the con-

stants b1, b2 and c3 are determined by the relations

b1 = −2c2c3, b2 =
1

2
+ c2

(
c3 −

qα
p

(
1

c1
+

1− α

2

))
,

c3 =
πp/2

(p+ 2)Γ(p/2 + 1)

∫ √
qα

0

rp+3g′
(
r2
)
dr.

Moreover, MCD is a recognized high breakdown point
estimator [18]. The breakdown point is the smallest propor-
tion of observations replaced with arbitrary values when the
estimator is invalid. Let Zm denote the data set after replac-
ing any m observations in Zn. Then, the breakdown point
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of μ̂MCD and Σ̂MCD are

ε∗n(μ̂MCD;Zn) =
1

n
min

{
m ∈ {1, 2, . . . , n} :

sup
m

∥∥μ̂MCD(Zn)− μ̂MCD(Zm)
∥∥ = +∞

}
,

ε∗n(Σ̂MCD;Zn) =
1
n min

{
m ∈ {1, 2, . . . , n} :

supm maxi
{∣∣log(λi

(
Σ̂MCD(Zn)

))
− log

(
λi

(
Σ̂MCD(Zm)

))∣∣}},
respectively, where λ1(Σ̂MCD) ≥ · · · ≥ λp(Σ̂MCD) > 0 are

all eigenvalues of Σ̂MCD. This means that when any eigen-
value of the scatter estimator tends to 0 or infinity, the MCD
estimation will collapse. Let k(Zn) denote the maximum
number of observations in Zn lying on the hyperplane. As-
sume that k(Zn) < h, then for the MCD estimator of loca-
tion and scatter, Rousseeuw and Driessen [37] shows that

ε∗n(μ̂MCD;Zn) = ε∗n(Σ̂MCD;Zn) =
min{n− h+ 1, h− k}

n
.

If Z is a continuous random vector, then

P
(
k(Zn) = p

)
= 1, a.s.,

and

ε∗n(μ̂MCD;Zn) = ε∗n(Σ̂MCD;Zn) =
min{n− h+ 1, h− p}

n
.

It implies that for any [(n + p)/2] ≤ h ≤ [(n + p + 1)/2],
we can have the highest breakdown point [n − p + 2]/(2n),
where [n] denotes the integer part of n. For the existence,
consistency, and weak convergence of MCD estimates, one
can refer to [2].

3.2 The T -type estimator

In many cases, when data is obtained, it is commonly as-
sumed that the data or the measurement errors associated
with the data follow a normal distribution. This assump-
tion forms the basis for modeling and parameter estima-
tion. However, this assumption of normal distribution may
not hold in many scenarios, especially when dealing with
heavy-tailed noise or outliers in the data. Therefore, it is
crucial to make reasonable assumptions about the distribu-
tion of the data, taking into account the presence of noise
and outliers. In the context of image data, noise and out-
liers are often inevitable due to various factors such as sensor
limitations, environmental conditions, or image acquisition
processes. These factors can introduce additional variability
and deviations from the idealized assumptions of normal-
ity. Therefore, it becomes essential to consider alternative
distributions or robust estimation techniques that can bet-
ter capture the characteristics of the data and handle the
presence of noise and outliers effectively.

In this subsection, we consider the case where z ∼
tp(μ,Σ, ν), where p, μ, Σ, and ν represent the dimension,

location, scatter, and degree of freedom parameters, respec-
tively. The probability density function of the t-distribution,
for a given ν > 0, is given by:

ϕν(z|μ,Σ)

=
|Σ|−1/2Γ((ν + p)/2)

Γp(1/2)Γ(ν/2)νp/2

(
1 +

(z − μ)�Σ−1(z − μ)

ν

)− ν+p
2

.

(8)

Let ρν(x) = (ν + p) log(1 + x�x
ν ) ∝ −2 log(ϕν(x|0, Ip)). If

Zn is obtained, we get the maximum likelihood estimate
(MLE) of (μ,Σ) as

(μ̂, Σ̂) = argmax
(μ,Σ>0)

n∑
i=1

logϕν(zi|μ,Σ)(9)

= argmin
(μ,Σ>0)

n∑
i=1

(
ρν

(
Σ−1/2(zi − μ)

)
+ log |Σ|

)
=: argmin

(μ,Σ>0)

n∑
i=1

l(μ,Σ; zi),

where l(μ,Σ; z) is viewed as a loss function. It is obvious to
see

tp(μ,Σ)
d
= μ+

Σ1/2Y√
κ

,

where Y ∼ Np(0, Ip), νκ ∼ χ2
ν . It yields that

(10) Z|(μ,Σ, κ) ∼ Np(μ,Σ/κ),

and we treat κ as weight of Z. When ν > 1, μ is the mean
of Z, and if ν > 2, ν/(ν − 2)Σ is the covariance matrix.
As ν → ∞, Z ∼ Np(μ,Σ). Therefore, the t distribution
family provides a heavy-tailed alternative for the normal
family. Let MDz(μ,Σ) = (z − μ)�Σ−1(z − μ) be the Ma-
halanobis distance between z and the center μ with respect
to Σ. Because the Gamma distribution is a conjugate prior
distribution, according to (10), the conditional posterior dis-
tribution of κ given (z,μ,Σ) follows

κ|(z,μ,Σ) ∝ Gamma

(
ν + p

2
,
ν +MDz(μ,Σ)

2

)
,

from which we have

(11) E(κ|z,μ,Σ) =
ν + p

ν +MDz(μ,Σ)
.

By (10), we can get the following likelihood function of Zn

and κn = {κ1, κ2, . . . , κn}

logLN (μ,Σ|Zn,κn)(12)

= −n

2
log |Σ| − 1

2

n∑
i=1

κi(zi − μ)�Σ−1(zi − μ).
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In statistical practice, the EM algorithm is used for the

MLE of (μ,Σ) with missing κn. Let Θ
(t) = {Zn, μ̂

(t)
T , Σ̂

(t)
T }.

Initialize μ(0) and Σ(0) to zero vector and identity matrix,
respectively. From (11) and (12), at iteration t+1 with input
Θ(t),

E-step: Calculate

w
(t+1)
i = E

(
κi|Θ(t)

)
=

ν + p

ν +MDzi(μ̂
(t)
T , Σ̂

(t)
T )

, i = 1, . . . , n;

(13)

M-step: Calculate

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μ̂

(t+1)
T =

∑n
i=1 w

(t+1)
i zi∑n

i=1 w
(t+1)
i

,

Σ̂
(t+1)
T =

1

n

n∑
i=1

w
(t+1)
i (zi − μ̂

(t+1)
T )(zi − μ̂

(t+1)
T )�.

(14)

Next, if Z follows a general distribution F (·) with cen-
ter μ and scatter matrix Σ, we still minimize the specific
loss function on the right side of (8), and define the T-type
estimate of (μ,Σ) as

(μ̂T , Σ̂T ) = argmin
(μ,Σ>0)

n∑
i=1

(
ρν

(
Σ−1/2(zi − μ)

)
+ log |Σ|

)
.

It is worthy to note that the EM algorithm (12) and (13) are
also available for the calculation of T-type estimator (μ,Σ).
Usually, we recommend the degree of freedom ν taken as
3 ∼ 5 due to a tradeoff between robustness and efficiency of
estimate (μ̂T , Σ̂T ).

Analogous to MCD estimator, the T -type estimator is
also affine equivariant [10].

Finally, we provide two robustness indicators: the influ-
ence function and the breakdown bound, for a multivariate
T -type estimator. The proof of the following theorem is pro-
vided in the appendix.

Theorem 3.2. Let Z be a random vector with location and
scale parameters (μ,Σ). Given ν > 0, the influence function
of μ̂T of Z at F is

IF (x, μ̂T , F )

=

{
EF

[ν+(Z−μ)�Σ−1(Z−μ)]Σ−1−2Σ−1(Z−μ)(Z−μ)�Σ−1

[ν+(Z−μ)�Σ−1(Z−μ)]2

}−1

· Σ−1(x− μ)

ν + (x− μ)�Σ−1(x− μ)
,

and the influence function of Σ̂T denoted by IF (x, Σ̂T , F )

satisfies the following equation

IF (x, Σ̂T , F ) + (ν + p)EF

×
(

(Z−μ)(Z−μ)�tr{Σ(F )−1(Z−μ)(Z−μ)�Σ(F )−1IF (x,Σ̂T ,F )}
[ν+(Z−μ)�Σ(F )−1(Z−μ)]2

)
=

(ν + p)(x− μ)(x− μ)�

ν + (x− μ)�Σ(F )−1(x− μ)

− (ν + p)EF

(
(Z − μ)(Z − μ)�

ν + (Z − μ)�Σ(F )−1(Z − μ)

)
.

(15)

Denote Σ(F )−1/2IF (x, Σ̂T , F )Σ(F )−1/2 = (hi,j(x))p×p.

If F is further assumed to be an elliptically sym-
metric distribution with stochastic representation (6),

for i �= j, the diagonal and off-diagonal entries of

Σ(F )−1/2IF (x, Σ̂T , F )Σ(F )−1/2 are

hi,i(x) =

(
1 +

3(ν + p)

p(p+ 2)
E

r2

(ν + r2)2

)−1

·
(
Mi,i(x)−

ν + p

p(p+ 2)
E

r2

(ν + r2)2

∑
j �=i

hj,j(x)

)
,

hi,j(x) =

(
1 +

2(ν + p)

p(p+ 2)
E

r2

(ν + r2)2

)−1

Mi,j(x),

where (Mi,j(x))p×p = (ν+p)Σ−1/2(x−μ)(x−μ)�Σ−1/2

ν+(x−μ)�Σ(F )−1(x−μ)
− Ip.

Figures 4 and 5 plot the influence functions of T -type

location and scale estimators at bivariate t(1) distribution
with mean zero and covariance matrix (0.5|i−j|)2×2. It shows

the functions are bounded and smooth.

Figure 4. Influence function of the first element of T -type
location estimator at bivariate t(1) distribution with mean

zero and covariance matrix (0.5|i−j|)2×2.

Denote Fε = (1−ε)F+εΔx, where Δx is a Dirac measure

putting all its mass on x. Operating with distributions of the
form Fε, to calculate the breakdown bound ε∗ of (μ̂T , Σ̂T ),

letting x → ∞, Maronna [32] obtains

ε∗
(
(μ̂T , Σ̂T );Zn

)
≤ min

{
1

ν + p
,

ν

ν + p

}
.
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Figure 5. Influence function of T -type scale estimator at
bivariate t(1) distribution with mean zero and covariance
matrix (0.5|i−j|)2×2, IF11 the first diagonal entry of the

scatter matrix, IF12 for the off-diagonal entry of the scatter
matrix.

3.3 A weight remark

Combining (4) and (14), we provide the following generic
expression of the robust estimators of μ and Σ

μ̂ =
n∑

i=1

1i(z1, . . . , zn)zi,

Σ̂ =

n∑
i=1

2i(z1, . . . , zn)(zi − μ̂)(zi − μ̂)�,

(16)

where i(z1, . . . , zn) is a bounded weight function
based on the distance between zi and μ and makes
the corresponding estimator affine equivariant. In par-
ticular, when 1i(z1, . . . , zn) = 2i(z1, . . . , zn) =
IHt+1(i)/

∑n
j=1 IHt+1(j), (16) is the MCD estimators at

(t + 1) iteration, where IHt+1(·) is the indicator function
of a subset Ht+1 of {1, . . . , n}; When 1i(z1, . . . , zn) =

ω
(t+1)
i /

∑n
i=1 ω

(t+1)
i and 2i(z1, . . . , zn) = ω

(t+1)
i /n, (16)

represents the (t + 1)-step of T -type estimators, where

ω
(t+1)
i is defined as (13); When 1i(z1, . . . , zn) =

2i(z1, . . . , zn) = 1/n, (16) is the sample mean and sample
covariance matrix.

Recall (2) and replace (μ̂c, Σ̂) with the robust estimators
of the location parameters in each class and the common
scatter matrix. Then,

(17) K̂R(x) = min
c

(
f(x)− μ̂c,R

)�
Σ̂−1

R

(
f(x)− μ̂c,R

)
,

where the subscript R represents MCD or T -type estimators,
or other robust estimation methods.

In order to enhance the model’s performance and utilize
the low-level features of the deep neural network, the fea-
tures from each level of the network are integrated. For a
given sample x, the features of the �th hidden layer are de-
noted as f�(x). The mean {μ̂�,1, . . . , μ̂�,C} and covariance
Σ� of this layer are calculated. To measure the confidence
score of x in layer �, we employ (17). Consequently, the

weighted confidence score of x across each layer of the neu-
ral network is defined as:

(18) AR(x) =
∑
�

α�K�,R(x),

where AR(x) serves as the measure for anomaly detection,
and the threshold is determined through cross-validation.
Here, α� denotes the weight assigned to the �th layer, which
is obtained by training a logistic model.

3.4 Class incremental learning

The confidence score based on Mahalanobis distance can
be naturally extended to class incremental learning [35].
This approach allows a pre-training model to gradually in-
corporate new class samples without the need to retrain the
neural network model. This capability is crucial in real-world
applications, as deep neural networks are commonly used for
processing large volumes of data. Retraining the model ev-
ery time a new class of data is obtained can be costly, and
there is no guarantee that the new class data does not con-
tain abnormal samples. Therefore, ensuring robust estima-
tion of the Mahalanobis distance is particularly important
when using the confidence score based on it for discrimina-
tion. In Algorithm 1, we present a general framework for
class incremental learning based on the Mahalanobis dis-
tance confidence score. This framework is applicable to the
two robust estimation methods discussed in the paper: MCD
and T -type estimators. It can also be extended to other ro-
bust estimation methods.

Algorithm 1 Extension of confidence score based on RMD
to class incremental learning

Require: Dataset from new class xi, i = 1, 2, . . . , nC+1; mean
and covariance of observed classes (μ̂c, Σ̂), c = 1, . . . , C

Ensure: Mean and covariance of all classes (μ̂c, Σ̂), c =
1, . . . , C, C + 1

1: Based on MCD or T -type estimators and using xi, i =
1, 2, . . . , nC+1, calculate (μ̂C+1, Σ̂C+1)

2: Update the covariance of all classes Σ̂ ←− C
C+1

Σ̂+ 1
C
Σ̂C+1

4. REAL DATA ANALYSIS

In this section, we evaluate the performance of the pro-
posed method by conducting experiments. We utilize the
DenseNet and ResNet architectures as the CNN models.
Furthermore, we select the following image datasets for our
experiments: SVHN, TinyImageNet, LSUN, CIFAR-10, and
CIFAR-100.

4.1 Outlier detection

Setup In our outlier detection experiments, we trained
DenseNet with 100 layers and ResNet with 34 layers, fol-
lowing the architectures proposed in Huang, Liu and Wein-
berger [16] and He et al. [11] respectively. The training data
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Table 2. Outlier detection (all numbers are percentages; the best results are bolded)

In-dist
(model)

OOD
Validation on OOD samples

TNR at TPR 95% AUROC Detection acc.
Baseline method/ODIN/Mahalanobis/S/MCD/T -type estimator

CIFAR-10
(DenseNet)

SVHN 40.2/86.2/90.8/88.5/86.5/99.1 89.9/95.5/98.1/96.7/95.9/97.7 83.2/91.4/93.9/92.3/91.7/96.3
TinyImageNet 58.9/92.4/95.0/91.1/91.2/98.3 94.1/98.5/98.8/97.3/97.1/98.1 88.5/93.9/95.0/93.2/93.2/97.7

LSUN 66.6/96.2/97.2/96.7/95.4/97.5 95.4/99.2/99.3/98.8/98.2/99.2 90.3/95.7/96.3/96.0/95.4/99.5

CIFAR-100
(DenseNet)

SVHN 26.7/70.6/82.5/79.9/80.5/99.7 82.7/93.8/97.2/93.8/94.0/93.7 75.6/86.6/91.5/88.5/88.9/98.8
TinyImageNet 17.6/42.6/86.6/81.6/76.1/90.7 71.7/85.2/97.4/96.1/90.6/91.8 65.7/77.0/92.2/90.6/86.7/97.5

LSUN 16.7/41.2/91.4/84.0/78.9/93.2 70.8/85.5/98.0/95.5/91.9/94.3 64.9/77.1/93.9/90.6/87.6/99.6

SVHN
(DenseNet)

CIFAR-10 69.3/71.7/96.8/95.4/79.3/96.6 91.9/91.4/98.9/98.6/91.4/98.7 86.6/85.8/95.9/95.4/88.1/95.9
TinyImageNet 79.8/84.1/99.9/99.7/99.2/99.9 94.8/95.1/99.9/99.7/99.3/99.8 90.2/90.4/98.9/98.4/97.8/98.6

LSUN 77.1/81.1/100/99.9/99.5/99.9 94.1/94.5/99.9/99.7/99.4/99.8 89.1/89.2/99.3/98.6/98.1/99.1

CIFAR-10
(ResNet)

SVHN 32.5/86.6/96.4/95.3/95.4/96.2 89.9/96.7/99.1/99.0/99.1/99.1 85.1/91.1/95.8/95.3/95.3/95.6
TinyImageNet 44.7/72.5/97.1/96.3/95.2/97.1 91.0/94.0/99.5/99.2/99.0/99.4 85.1/86.5/96.3/96.2/95.2/96.4

LSUN 45.4/73.8/98.9/98.6/97.5/98.9 91.0/94.1/99.7/99.5/99.1/99.7 85.3/86.7/97.7/97.5/96.8/97.7

CIFAR-100
(ResNet)

SVHN 20.3/62.7/91.9/91.4/91.9/90.2 79.5/93.9/98.4/98.0/98.3/98.2 73.2/88.0/93.7/93.5/93.6/93.3
TinyImageNet 20.4/49.2/90.9/85.7/88.3/88.5 77.2/87.6/98.2/97.0/97.6/97.7 70.8/80.1/93.3/91.3/92.2/92.3

LSUN 18.8/45.6/90.9/84.6/88.7/89.5 75.8/85.6/98.2/97.0/97.8/97.9 69.9/78.3/93.5/91.3/92.8/93.0

SVHN
(ResNet)

CIFAR-10 78.3/79.8/98.4/98.2/98.1/98.5 92.9/92.1/99.3/99.3/99.0/99.2 90.0/89.4/96.9/96.8/96.6/97.0
TinyImageNet 79.0/82.1/99.9/99.9/99.9/99.9 93.5/92.0/99.9/99.9/99.8/99.8 90.4/89.4/99.1/98.9/98.9/98.8

LSUN 74.3/77.3/99.9/99.8/100.0/100.0 91.6/89.4/99.9/99.8/99.9/99.9 89.0/87.2/99.5/99.1/99.3/99.3

for the CNN consisted of CIFAR-10, CIFAR-100, and SVHN
datasets, which were considered as in-distribution samples
(positive). Conversely, the outlier data (negative) were not
included in the training process. The SVHN, TinyImageNet,
and LSUN datasets were used as abnormal samples in our
experiments. Since the objective is to distinguish between
in-distribution and abnormal observations, the outlier de-
tection task can be framed as a binary classification prob-
lem. Utilizing the weighted confidence formulation described
in Equation (18), we determined an appropriate threshold
for outlier identification through cross-validation. To assess
the performance of our model, we employed three evalua-
tion metrics: the true negative rate (TNR) at a fixed true
positive rate (TPR) of 95%, the area under the receiver op-
erating characteristic curve (AUROC), and the detection
accuracy. To benchmark the effectiveness of our proposed
approaches, we compared them with the baseline method
introduced by Hendrycks and Gimpel [14], ODIN by Liang,
Li and Srikant [27], and the method based on Mahalanobis
distance presented in [26].

In our experiment, we extracted the confidence scores
from ResNet’s residual block and DenseNet’s dense block.
These scores were then combined to obtain the final
weighted confidence score. To tune the hyperparameters, we
selected 1000 pairs of in-distribution samples and outliers.
The logistic parameters were obtained through nested cross-
validation using the validation dataset. The experimental
results are presented in Table 2.

From Table 2, it is evident that almost all of the best
results are achieved by methods based on Mahalanobis
distance and T -type estimator. When the feature extrac-
tion network is DenseNet, the T -type estimator consistently

yields the optimal results. On the other hand, when the
feature extraction network is ResNet, the method based on
Mahalanobis distance obtains the best results. In scenarios
where the T -type estimator performs optimally, the other
methods generally produce less satisfactory results. For in-
stance, when the in-distribution samples are from CIFAR-10
and the outlier samples are from SVHN, with a DenseNet
network structure, the T -type estimator achieves a remark-
able TNR of 99.1%, whereas the other methods do not
surpass 91% TNR. Similarly, when the method based on
Mahalanobis distance achieves the best results, the differ-
ences between the other methods and the Mahalanobis dis-
tance results are relatively minor. For example, when the
in-distribution samples are from CIFAR-100 and the outlier
samples are from SVHN, with a ResNet network structure,
the TNR achieved by the Mahalanobis distance method is
91.9%, and the TNR of the other methods is around 91%.
These findings suggest that the T -type estimator signifi-
cantly improves upon the limitations of existing methods
and is capable of maintaining detection performance simi-
lar to the best methods in many scenarios. This underscores
the robustness of the T -type estimator and its potential to
address shortcomings in outlier detection tasks effectively.

4.2 Adversarial detection

Setup. In adversarial sample detection, DenseNet and
ResNet are employed for training on CIFAR-10, CIFAR-
100, and SVHN datasets to construct pre-training models.
These training datasets are considered as in-distribution
samples (positive), while adversarial samples (negative) are
generated based on the training dataset using four meth-
ods: FGSM, BIM, DeepFool, and C&W. For comparison,
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Table 3. Adversarial detection (all numbers are AUROC(%) and the best results are bolded)

Model Dataset Score
Detection of known attack Detection of unknown attack

FGSM BIM DeepFool C&W FGSM(seen) BIM DeepFool C&W

DenseNet

CIFAR-10

KD+PU 85.96 96.80 68.05 58.72 85.96 3.10 68.34 53.21
LID 98.20 99.74 85.14 80.05 98.20 94.55 70.86 71.50

Mahalanobis 99.94 99.78 83.41 87.31 99.94 99.51 83.42 87.95
S estimator 98.41 92.96 63.16 77.86 98.41 96.79 48.69 44.34

MCD 99.50 86.93 69.85 76.67 99.50 94.94 58.29 55.16
T -type estimator 99.77 97.12 61.08 77.71 99.77 98.57 59.89 57.83

CIFAR-100

KD+PU 90.13 89.69 68.29 57.51 90.13 66.86 65.30 58.08
LID 99.35 98.17 70.17 73.37 99.35 68.62 69.68 72.36

Mahalanobis 99.86 99.17 77.57 87.05 99.86 98.27 75.63 86.20
S estimator 96.93 86.39 67.17 72.61 96.93 93.24 61.81 66.27

MCD 96.85 94.65 66.68 77.72 96.85 90.51 60.33 62.81
T-type estimator 99.45 98.40 66.75 74.41 99.45 90.36 66.02 71.02

SVHN

KD+PU 86.95 82.06 89.51 85.68 86.95 83.28 84.38 82.94
LID 99.35 94.87 91.79 94.70 99.35 92.21 80.14 85.09

Mahalanobis 99.85 99.28 95.10 97.03 99.85 99.12 93.47 96.95
S estimator 99.80 99.06 88.53 96.47 99.80 98.31 74.12 95.79

MCD 99.72 98.74 86.13 95.67 99.72 98.51 85.81 95.47
T -type estimator 99.71 99.16 85.97 96.73 99.71 96.87 88.91 93.47

ResNet

CIFAR-10

KD+PU 81.21 82.28 81.07 55.93 83.51 16.16 76.80 56.30
LID 99.69 96.28 88.51 82.23 99.69 95.38 71.86 77.53

Mahalanobis 99.94 99.57 91.57 95.84 99.94 98.91 78.06 93.90
S estimator 99.80 98.42 83.87 93.80 99.80 97.79 80.08 91.96

MCD 99.78 98.01 84.79 90.71 99.78 97.99 80.70 90.49
T -type estimator 99.92 99.14 84.47 95.04 99.92 98.71 75.60 93.39

CIFAR-100

KD+PU 89.90 83.67 80.22 77.37 89.90 68.85 57.78 73.72
LID 98.73 96.89 71.95 78.67 98.73 55.82 63.15 75.03

Mahalanobis 99.77 96.90 85.26 91.77 99.77 96.38 81.95 90.96
S estimator 99.68 96.99 75.87 90.59 99.68 97.04 71.38 90.72

MCD 99.69 96.45 77.45 90.61 99.69 96.42 75.06 90.86
T -type estimator 99.70 96.78 77.43 91.37 99.70 96.55 73.13 90.80

SVHN

KD+PU 82.67 66.19 89.71 76.57 82.67 43.21 84.30 67.85
LID 97.86 90.74 92.40 88.24 97.86 84.88 67.28 76.58

Mahalanobis 99.62 97.15 95.73 92.15 99.62 95.39 72.20 86.73
S estimator 98.84 96.01 86.87 91.79 98.84 93.94 74.38 88.70

MCD 98.86 95.75 86.99 92.06 98.86 93.98 77.99 88.95
T -type estimator 99.04 96.48 87.28 91.86 99.04 95.21 66.52 89.00

methods based on robust Mahalanobis distance estimation
(MCD, S, and T -type estimators) are compared with the
original Mahalanobis distance-based method (Mahalanobis)
[26], kernel density (KD) [7], predictive uncertainty (PU)
[7], and local intrinsic dimensionality (LID) scores [30]. To
train logistic parameters, 10% of the test data is randomly
selected, and the remaining test set is used for model evalu-
ation. Nested cross-validation and training data are utilized
for hyperparameter tuning. Additionally, considering vari-
ous scenarios where the specific attack type is unknown,
we conducted further experiments for comparison. Specifi-
cally, we used in-distribution samples and their adversarial
samples generated using FGSM to train a logistic classifier,
which was then used to detect the other three types of ad-
versarial samples. The results are presented in the rightmost
column of Table 3.

From the table above, it is evident that methods based
on Mahalanobis distance and three robust estimation tech-
niques outperform the two baseline methods, KD+PU and
LID. Overall, their performance ranks as follows: Maha-
lanobis � T -type estimator � MCD � S estimator, where
� denotes ‘outperforms’. Additionally, the Mahalanobis
distance-based approach achieves superior detection perfor-
mance in most scenarios. However, we should also note that
there is no significant difference in numerical results between
the Mahalanobis distance method and the three robust esti-
mation methods. For instance, when in-distribution samples
are from CIFAR-10, the network is ResNet, and the abnor-
mal samples are generated using FGSM, the Mahalanobis
distance yields an AUROC of 99.94%, while the other three
robust estimation techniques achieve AUROC of 99.80%,
99.78%, and 99.92%, respectively. This indicates that the
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Figure 6. Comparison of AUROC (%) under extreme
scenarios: (a) small number of training data. (b) Random
label is assigned to training data on CIFAR-10 dataset.

three robust estimation methods are also highly competi-
tive and may achieve optimal performance in more complex
scenarios.

4.3 Comparison of robustness

In this section, we designed more complex scenarios to
compare the method based on Mahalanobis distance with
the three robust estimation methods. The entire detection
process includes training the neural network, extracting fea-
tures at each layer, estimating the mean vectors and covari-
ance matrices, and training a logistic model used for the
detection process. Since our experiments were conducted
based on a pre-trained model, we intentionally made the
second and third steps more complex to conduct a robust-
ness comparison.

In the context of abnormal detection, we used CIFAR-10
as the in-distribution sample and employed SVHN, Tiny-
ImageNet, and LSUN as the abnormal samples. For adver-
sarial detection, we utilized CIFAR-10 as the in-distribution
sample and generated abnormal samples based on the four
adversarial sample generation algorithms discussed in Sec-
tion 2. Two scenarios were considered for mean vector and
covariance matrix estimation: data proportion and random
labels. The experimental results are presented in Figures 6
and 7. Throughout all the experiments, ResNet was used as
the network architecture.

Figure 7. Comparison of AUROC (%) under different training
data. To evaluate the robustness of the methods based on
Mahalanobis distance, we train ResNet (a) by varying the
number of training and (b) by assigning random labels to

training data on the CIFAR-10 dataset.

From Figures 6 and 7, it can be observed that the ab-
normal detection performance of the Mahalanobis distance-
based method and the three robust estimation methods re-
main unchanged with variations in the sample ratio and
random label ratio. Furthermore, all four methods exhibit
excellent detection performance. In adversarial sample de-
tection, regardless of changes in sample size or random label
ratios, the three robust estimation methods can maintain
similar levels of detection performance. However, the detec-
tion performance of the method based on Mahalanobis dis-
tance varies greatly, indicating the importance of robust Ma-
halanobis distance estimation. When the adversarial attacks
are generated by FGSM and BIM methods, the three robust
estimation methods exhibit almost identical detection per-
formance to the Mahalanobis distance-based method, with a
slight advantage in some scenarios, such as when the sample
ratio is 5k and the adversarial attack is BIM. In scenarios
where the adversarial attacks are DeepFool and CML2, the
majority of the three robust estimation methods outperform
the Mahalanobis distance-based method. It is worth noting
that DeepFool and CML2 are relatively the strongest among
the four attack methods, which further emphasizes the ne-
cessity and importance of robust Mahalanobis distance es-
timation.

Our second robustness comparison experiment involved
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Table 4. Detection results at different proportions (all numbers are AUROC(%) and the best results are bolded)

Model Estimator
Proportions

(0.1, 0.9, 0.0) (0.1, 0.8, 0.1) (0.1, 0.6, 0.3) (0.1, 0.2, 0.7) (0.1, 0.0, 0.9)

ResNet

Mahalanobis 99.48 96.44 96.44 96.44 96.34
S 90.12 79.54 79.54 79.54 95.18

MCD 99.16 99.29 99.29 99.29 95.81
T 97.94 86.98 86.98 86.98 90.23

DenseNet

Mahalanobis 92.41 85.00 85.00 85.00 89.67
S 92.64 97.31 97.31 97.31 94.29

MCD 95.43 95.43 95.43 95.43 96.40
T 95.51 97.43 97.43 97.43 97.23

Three proportions represent, in order, the proportions of in-distribution samples, outlier samples, and adversarial samples.

training a logistic classifier with a combination of in-
distribution, outlier, and adversarial samples. In this setup,
the outliers and adversarial samples were considered as the
negative class, while CIFAR-10 served as the positive class.
Specifically, CIFAR-10 was used as the in-distribution sam-
ple, SVHN as the outlier sample, and FGSM-generated sam-
ples based on CIFAR-10 as the adversarial sample. The test
set consisted of a proportion of 0.33 for in-distribution sam-
ples, 0.33 for outliers, and 0.34 for adversarial samples. The
experimental results are presented in Table 4.

From Table 4, it is evident that for the ResNet network
architecture, the methods based on Mahalanobis distance
and MCD estimation achieve the best performance, while
the S estimator performs the worst. For the DenseNet net-
work architecture, the T -type estimator achieves the best
performance, generally followed by the S estimator, while
the method based on Mahalanobis distance exhibits the
poorest performance. This implies that the method based on
Mahalanobis distance is not universally effective in all sce-
narios. In more complex scenarios, robust estimation-based
methods are superior.

4.4 Training time

Given a pre-trained model, the total computation time
for abnormal detection includes the time for feature extrac-
tion, estimation of mean vectors and covariance matrices at
each layer, calculation of confidence scores, and the discrim-
inative process based on logistic regression. Therefore, the
difference among the methods lies in the estimation time
of mean vectors and covariance matrices, which are pro-
vided in the table below. The results indicate that the com-
putation time for sample mean and sample covariance is
clearly the shortest, followed by the T-estimator, while the
MCD estimator has the longest computation time among
all the robust estimators. Furthermore, the training time
for the ResNet model is significantly shorter compared to
the DenseNet model.

5. CONCLUSION

In this article, the robust estimation of Mahalanobis dis-
tance is proposed to process abnormal sample detection. In

Table 5. Comparison of training time (in seconds)

In-dist
(model)

Mahalanobis S MCD T -type estimator

CIFAR-10
(Densenet)

19.0 410.2 1546.4 386.1

CIFAR-100
(Densenet)

24.7 498.2 1792.5 163.2

SVHN
(Densenet)

23.0 985.1 1695.9 163.2

CIFAR-10
(Resnet)

0.4 212.4 644.8 178.5

CIFAR-100
(Resnet)

0.6 251.6 916.5 175.2

SVHN
(Resnet)

0.7 464.2 986.8 42.3

terms of the powerful feature extraction capabilities of deep
neural networks, besides image data, one can apply modi-
fied inception V3 and ResNest-50 models to audio data [15],
and apply ConvNet with embedding FastText and LSTM
models to text data [21], to obtain the pre-trained features
for classification and detecting abnormal samples, so that
the proposed method using various deep convolutional neu-
ral networks can be applied to not only vision datasets but
also text, audio datasets. Deep learning models generally
require a large number of training samples to achieve a bet-
ter performance; but in actual application scenarios, they
may not have so many training samples. At this time, the
method of the article can be extended to high-dimensional
scenarios, in which the training samples are limited, the neu-
ral network model is determined and the number of hidden
layers or the feature dimension is higher. In this way, the
Mahalanobis distance in high-dimensional scenarios can be
robustly estimated, such as MRCD [1] and MDP [36] for
abnormal sample detection.

Abnormal sample detection based on Mahalanobis dis-
tance can achieve better performance on the pre-training
model. When the strength of the adversarial sample in-
creases, or the outlier sample has a high degree of similarity
to the training sample, the abnormal sample detection based
on Mahalanobis distance is equivalent to having anomalies
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in the features extracted by the deep neural network value.
The methods based on MCD and T -type estimators have
similar performance to the method based on Mahalanobis
distance in most scenes, but the performance in some scenes
is greatly improved;

It is often used in preprocessing to remove anomalous
data, which is done for several significance. After the ab-
normal samples are detected and removed from the dataset,
it allows the learning algorithm to learn a more accurate
model and improve its predictive utility; the statistics of
data such as the mean and standard deviation are closer to
the corresponding true values of the population, which re-
sults in a statistically significant increase in accuracy, and
the visualization of data can also be improved. Anomalies
are also often the most important observations in the data
to be found such as in intrusion detection or detecting ab-
normalities in medical images.
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APPENDIX A. TECHNICAL DETAILS ON
THE INFLUENCE

FUNCTION OF T -TYPE
ESTIMATION

A.1 Proof of Theorem 3.2

For a given ν > 0, recall the loss function l(μ,Σ; z) on
the right side of (9)

l(μ,Σ; z)=log |Σ|+(ν + p) log

(
1+

(z − μ)�Σ−1(z − μ)

ν

)
which is opposite to the logarithm of (8). Since

d log |Σ| = |Σ|−1d|Σ| = tr
(
Σ−1dΣ

)
and

d log

(
1 +

(z − μ)�Σ−1(z − μ)

ν

)
=

(
1 +

(z − μ)�Σ−1(z − μ)

ν

)−1
1

ν
(z − μ)�dΣ−1(z − μ)

=− (z − μ)�Σ−1dΣΣ−1(z − μ)

ν + (z − μ)�Σ−1(z − μ)

=− tr(Σ−1(z − μ)(z − μ)�Σ−1dΣ)

ν + (z − μ)�Σ−1(z − μ)
,

we have d log |Σ|/dΣ = Σ−1, and

d log(1 + (z−μ)�Σ−1(z−μ)
ν )

dΣ
= −Σ−1(z − μ)(z − μ)�Σ−1

ν + (z − μ)�Σ−1(z − μ)
.

Then,

0 = EF

(
∂l(μ,Σ;Z)

∂Σ

)(19)

= Σ(F )−1−(ν+p)EF

(
Σ(F )−1(Z−μ)(Z−μ)�Σ(F )−1

ν + (Z − μ)�Σ(F )−1(Z − μ)

)
,

0 = EF

(
∂l(μ,Σ;Z, ν)

∂μ

)(20)

= −EF
(ν + p)Σ−1(Z − μ(F ))

ν + (Z − μ(F ))�Σ−1(Z − μ(F ))
.

(19) is equivalent to

Σ(F )− (ν + p)EF

(
(Z − μ)(Z − μ)�

ν + (Z − μ)�Σ(F )−1(Z − μ)

)
= 0.

(21)

Then, substituting Fε = (1−ε)F+εΔx for F in (20) and (21)
and taking the derivative w.r.t. ε at ε = 0, we have

EF
(ν + p)Σ−1IF (x, μ̂T , F )

ν + (Z − μ(F ))�Σ−1(Z − μ(F ))

(22)

− EF
2(ν + p)Σ−1(Z−μ(F ))(Z−μ(F ))�Σ−1IF (x, μ̂T , F )

[ν + (Z − μ(F ))�Σ−1(Z − μ(F ))]2

=
(ν + p)Σ−1(x− μ(F ))

ν + (x− μ(F ))�Σ−1(x− μ(F ))
.

From (22), the influence functions of μ̂T and (15) hold.
When Z satisfies (6). using (21), (15) can be rewritten as(
Mi,j(x)

)
p×p

=
(
hi,j(x)

)
p×p

+ (ν + p)EF
r2UU�U�(hi,j(x))p×pU

(ν + r2)2
.

By calculation, we complete the proof.

A.2 Additional numerical results

A.2.1 Influence function

Under the bivariate t(1) distribution with μ =
(μ1, μ2)

� = 0 and Σ = (Σi,j)2×2 = (0.5|i−j|)2×2, Fig-
ures A.1 and A.2 further show the graphs of influence func-
tions of T -type estimators for μ2, Σ2,1 and Σ2,2, respec-
tively. It can be seen that the influence functions of T -type

Abnormal sample detection 103



scale estimator for Σ1,2 and Σ2,1 are the same. By swap-
ping the X and Y axis, Figures 4 and A.1 would have the
same pattern, and so do the influence functions of Σ̂T for
the diagonal entries.

Figure A.1. Influence function of μ̂T at t(1) model for the
second element of T -type location estimator.

Figure A.2. Influence function of Σ̂T at t(1) model, IF21 for
the off-diagonal entry Σ2,1 and IF22 for the second diagonal

entry Σ2,2.

APPENDIX B. ADDITIONAL SIMULATION
STUDIES FOR ABNORMAL

DETECTION

In this subsection, we further explore the detection per-
formance and robustness of four Mahalanobis distance-
based methods in the presence of both OOD and adversarial
samples through simulation experiments.

Given that the CNNs used in this paper extract features
with different dimensions for each hidden layer, we set two
layers in the simulation study. For the first layer, the fea-
ture of the in-distribution sample follows a 5-dimensional
Gaussian mixture distribution 0.5N5(μ1,Σ)+0.5N5(μ2,Σ),
and the OOD samples are generated from N5(μ3, I5), where
μ1 = (2, . . . , 2)�, μ2 = (−2, . . . ,−2)�, μ3 = (5, . . . , 5)�,
Σ = (0.5|i−j|)p×p. The dimension of the feature extracted
by the second layer is ten, where the first five dimensions
for both in-distribution and OOD samples are the same as
the first layer, while the remaining five dimensions are drawn
from a standard normal distribution. In other words, the last
five dimensions of the extracted features in the second layer
are noise following a standard normal distribution, while

the first five dimensions maintain the classification charac-
teristics from the first layer. During the training and testing
phases, the sample size for in-distribution data is 1000, and
the sample size for OOD data is 500. We consider the fol-
lowing two ways for generating adversarial samples:

AD1: Randomly select 500 observations from the in-
distribution samples and add t(1) random variables
to each dimension of these 500 in-distribution obser-
vations;

AD2: Randomly select 500 observations from the in-
distribution samples and add a constant value of 3
to each of these 500 in-distribution observations.

In order to assess the robustness of the four methods,
during the training phase, we considered two types of per-
turbations. Firstly, we introduced a scenario where 30% of
the labels were randomly confused and evenly distributed
among the in-distribution, OOD, and adversarial samples.
Secondly, we added a constant perturbation of 100 to one
observation in the in-distribution sample. These two per-
turbation settings were referred to as “False label” and “1st
obs contam.” respectively, while the training set without any
perturbations was referred to as “clean.”

Table B.1. Abnormal detection (all numbers are TNR at TPR
95(%) and the best results are bolded)

Estimator
Clean False Label 1st obs contam.

AD1 AD2 AD1 AD2 AD1 AD2

Mahalanobis 99.1 99.7 92.2 29.4 93.7 36.5
S 99.0 99.7 98.0 33.6 98.7 99.9

MCD 99.2 99.7 98.8 99.9 98.9 99.9
T 99.1 99.7 95.7 37.5 98.9 99.9

Table B.1 presents the detection accuracy of the four Ma-
halanobis distance-based abnormal detection methods under
three perturbation settings for common OOD samples and
two types of adversarial samples, measured by the TNR at
TPR of 95(%). In the scenario of “1st obs contam.,” the
contaminated observation leads to a significantly large con-
fidence score. Due to logistic regression being based on a
linear model, it is sensitive to outliers, which greatly affects
the fitting results when using such a large confidence score
as an explanatory variable. To mitigate this effect, in the
“1st obs contam.” scenario, we removed confidence scores
of in-distribution samples greater than the 0.997 quantile of
the chi-square distribution with degrees of freedom equal to
the feature dimension of each layer, before training the lo-
gistic regression detector. The results in Table 6 showed that
under the “clean” scenario, the four methods performed sim-
ilarly in abnormal detection. However, in the cases of “False
label” and “1st obs contam”, the robust Mahalanobis dis-
tance demonstrated significantly better performance than
Mahalanobis, with MCD showing the best performance. In
particular, when there exist false labels and AD2 is used
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as adversarial samples, MCD that selects a subsample with
minimum covariance determinant for estimating the center
and scatter matrix outperforms S and T-type estimators,
which mitigates the influence of outliers by assigning weights
to individual data points. However, the weights assigned by
S and T-type estimators in such a scenario do not exhibit
differences in orders of magnitude. Hence, the estimation of
the center and scatter matrix by S and T -type estimators
is not as effective as MCD, leading to inferior classification
performance.

Considering the sensitivity of the logistic model to out-
liers and its reliance on Mahalanobis confidence scores for
abnormal detection, we further discussed another approach
to abnormal detection that directly utilizes these Maha-
lanobis confidence scores. The confidence scores of each ob-
servation at each layer are transformed with the cumulative
distribution function of the chi-square distribution with de-
grees of freedom equal to the feature dimension of that layer.
The transformed confidence scores are then used to deter-
mine the threshold for distinguishing abnormal samples dur-
ing the training phase based on maximizing TNR at TPR
95(%). Table B.2 presents the detection accuracy of this
method. The results show that, under the clean condition,
the performance of all four methods remains similar. How-
ever, under False label and 1st obs contam., the robust Ma-
halanobis distance classifier outperforms the classical one,
with the best performance observed in the T -type estima-
tor. Nevertheless, compared to the results obtained using the
logistic model in Table B.2, this distance-based discrimina-
tion method sacrifices some detection accuracy. Integrating
the confidence scores from each layer in a robust manner
will also be a future consideration.

Table B.2. Abnormal detection by distance discriminant (all
numbers are TNR at TPR 95(%) and the best results are

bolded)

Estimator
Clean False Label 1st obs contam.

AD1 AD2 AD1 AD2 AD1 AD2

Mahalanobis 93.2 76.9 72.1 29.1 56.1 15.3
S 93.2 75.9 91.2 45.4 93.9 78.2

MCD 93.2 76.8 92.5 77.8 93.9 78.3
T 93.3 77.6 99.9 33.9 94.9 79.8
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