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Asymptotic properties of relative error estimation
for accelerated failure time model with divergent
number of parameters

Fei Ye, Hongyi Zhou, and Ying Yang
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The paper considers the problem of parameter estima-
tion in the accelerated failure time model with divergent
number of parameters under fixed design. We propose an
estimator based on the general relative error criterion. We
show that the proposed estimator is consistent and asymp-
totically normal under mild regular conditions. We also pro-
pose a variable selection procedure and show its oracle prop-
erty as well as the consistency of model selection. Numerical
studies have been conducted to compare the performance of
different general relative error based estimators.
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1. INTRODUCTION

Consider the following multiplicative model or acceler-
ated failure time (AFT) model

yk = exp
(
xT
k β

)
· εk, k = 1, . . . , n,

where xk is a p-dimensional fixed designed covariate, yk is
the corresponding response variable, εk is the unobservable
independent and identically distributed random error, β is
the unknown regression coefficient.

Obviously, the AFT model can be changed into linear
model after taking logarithm transformation. Traditionally,
M-estimator, including least square estimator and least ab-
solute estimator, is widely used to estimate the unknown pa-
rameters in the linear model. The asymptotic theory includ-
ing weak and strong consistency and asymptotic normality
of M-estimators in linear model has been comprehensively
and systematically studied in the monograph [15]. [19] fur-
ther developed the anaylysis of variance type methods based
on least absolute deviation. Many other estimation methods
have also been developed to handle different scenarios, in-
cluding high-dimensional cases or situations involving cen-
soring, see [25, 26, 27, 28] and references therein.
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The above-mentioned estimation method mostly based
on criteria related to the scale of absolute error, includ-
ing the least square (LS) and the least absolute deviation
(LAD). However, in many practical applications, particu-
larly when analyzing heteroscedastic data, absolute error
based method is not appropriate. For instance, in stock price
prediction, higher share price may require less accuracy in
terms of absolute error. Similarly, in lifetime data analysis,
the accuracy requirements for prediction in terms of abso-
lute error vary across different lifespans. Therefore, relative
error criterion may emerge as a more suitable alternative
due to its free to scale and robust to outliers. There are a
number of studies considering the relative errors in the liter-
ature. For instance, [22] proposed an absolute relative error
based estimation in linear model. [23] proved the strong con-
sistency of the estimators minimizing squared relative errors
and absolute relative errors. [24] derived the closed form of
the best mean squared relative error prediction.

Recently, [6] proposed the least absolute relative error
(LARE) based on the sum of two different types of relative
error. There are also studies of estimators based on relative
error criterion like minimum relative errors (MRE), relative
least squares (RLS) and least product relative error (LPRE)
see [21]. [11] proposed the general relative error criterion
(GREC), including LARE, RLS, LPRE as special cases. [5]
proposed an estimator for quantile model based on general
relative error. [12] and [14] extended the multiplication re-
gression model to partially linear and single index model
respectively.

In recent years, some researchers were interested in the
AFT model, whose number of parameters tends to infinity
(abbreviated as: divergent-dimensional AFT model). The
divergent-dimensional AFT model with response variable
yk, covariates xk, unknown parameter β∗

n and error εk is
represented by

(1) yk = exp
(
xT
k β

∗
n

)
· εk, k = 1, . . . , n,

where xk is a pn-dimensional covariate whose dimension
may vary with the sample size n. [10] studied the large
sample theory of absolute relative errors model under high-
dimensional settings. [9] proposed a general relative error
criterion based estimation using empirical likelihood under
divergent dimensional setting. Their works mainly focused
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on the hypothesis testing procedure of the unknown param-
eter, instead of estimating of the parameters. [7] studied the
asymptotic properties of general relative error based estima-
tors under random design when the loss function is convex.

[11] proposed a general relative error criterion for estimat-
ing the unknown parameter in the AFT model and they re-
vealed the connection between relative error estimators and
the M-estimation in the linear model. Using this connection,
the asymptotic properties of many relative error estimators
can be established in a unified way by the well-developed
M-estimation theories [15].

The major contributions of this paper are two-fold. First,
we extend the general relative error criterion to the estima-
tion of AFT model with divergent number of parameters
under fixed design. Second, we propose a model selection
procedure and study its theoretical properties.

We estimate the unknown parameter β∗
n in (1) by mini-

mizing the following general relative errors proposed by [11]:

ψn(β) =

n∑
k=1

ρ0

(∣∣∣∣yk − exp (xT
k β)

yk

∣∣∣∣, ∣∣∣∣yk − exp (xT
k β)

exp (xT
k β)

∣∣∣∣),

where ρ0(·, ·) is a nonnegative loss function, more concrete
examples see [11]. Taking the logarithm of the AFT model
(1) yields a linear model

(2) log yk = xT
k β

∗
n + εk, k = 1, . . . , n,

where εk = log εk, independent and identical distributed
with ε = log ε. Thus, the objective function becomes

ψn(β) =

n∑
k=1

ρ
(
log yk − xT

k β
)
,

where ρ(t) = ρ0(1 − exp (−t), exp (t) − 1). Different from
[7], our restrictions on the loss function are much weaker, for
instance, we do not require convexity of the loss function.
We establish the

√
n/pn-consistency and asymptotic nor-

mality of the estimator in a more general case. Moreover,
we propose a consistent estimation of covariance matrix.

Variable selection is a fundamental problem in statistic
modeling. [10] studied the variable selection procedure of
least absolute relative error model. [20] considered a least
product relative error based procedure for variable selec-
tion with fixed or an increasing number of parameters in
regression model. [16] proposed a nonconcave penalized M-
estimation of the least absolute relative error to deal with
sparse AFT model. [9] developed the inference of parameter
by using GREC and empirical likelihood. In this paper, we
develop an alternative variable selection procedure which is
different from [9] by minimizing penalized general relative
error, that is,

Qn(β) =
1

n

n∑
k=1

ρ0

(∣∣∣∣yk − exp (xT
k β)

yk

∣∣∣∣, ∣∣∣∣yk − exp (xT
k β)

exp (xT
k β)

∣∣∣∣)

+

pn∑
j=1

pλn(|βj |)

=
1

n

n∑
k=1

ρ
(
log yk − xT

k β
)
+

pn∑
j=1

pλn(|βj |),

where pλn(·) is a nonnegative penalty function which de-
pends on sample size n. It is worth noting that our pro-
posed methodology is general enough to cover many exist-
ing relative error based selection methods. For instance, if
we take ρ(t) = |et − e−t| with a Lasso-type penalty in (5.1),
then our method is equivalent to that in [10]. If we take
ρ(t) = |et + e−t − 2| with an adaptive Lasso-type penalty
in (5.1), then our method corresponds to that in [20]. We
also provide theoretical supports for our proposed method
including the oracle properties and consistency of model se-
lection.

The rest of the paper is organized as follows. Section 2
states the regularity conditions of the model. In Section 3,
asymptotic properties, including consistency and asymp-
totic normalities, of estimators based on GREC are devel-
oped. In Section 4, we provide estimators based on two rel-
ative error criteria. Simulation studies are reported in Sec-
tion 5. In Section 6, we propose a variable selection method
and develop its oracle properties and consistency. All the
proofs are deferred to Appendix.

2. REGULARITY CONDITIONS

To obtain the large-sample properties of the parameter
estimators, we require the following conditions on the di-
mension, covariates and loss function etc.

2.1 Regularity conditions on dimension and
covariates

In the following, we always assume that

• The number of parameters pn → ∞;
• The matrix Sn =

∑n
k=1 xkx

T
k is invertible.

Let the spectral decomposition of Sn be Sn = QnΛnQ
T
n ,

and denote S
1/2
n = Λ

1/2
n QT

n , S
−1/2
n = (S

1/2
n )−1 = QnΛ

−1/2
n ,

dn = max
1≤k≤n

xT
k S

−1
n xk.

Consider the following regularity conditions on pn and dn.

(A0) pn/n → 0;
(A1) dn → 0;
(A2) dn = o(1/pn);
(A3) dn = o(1/p4n).

The relationship between (A1)–(A3) is obvious, and the
implication of (A0) from (A1) is introduced in Lemma A.1
later.
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2.2 Regularity conditions on loss function
and random error

Deriving the asymptotic properties of the estimators re-
quires the following regularity conditions on the loss func-
tion ρ(·) and random error ε.

(B1) ρ(t) ∈ C2(R) is second order continuously differen-
tiable;

(B2) E[ρ′(ε)] = 0, E[ρ′(ε)]2 = σ2 < ∞;
(B3) E[ρ′′(ε)] = τ > 0, E[ρ′′(ε)]2 < ∞;
(B4) E{sups:|s|≤t |ρ′′(ε+ s)− ρ′′(ε)|2} = O(t2).

(B5) E|ρ′(ε)|4 < ∞, and

E
{

sup
s:|s|≤t

(∣∣ρ′(ε+ s)
∣∣2 − ∣∣ρ′(ε)∣∣2)2} = O

(
t2

)
.

(B1) is the requirement for the smoothness of the loss
function, which is weaker than the one of [17] for the third-
order differentiability of the likelihood function, and does
not contain the convexity required by [7] and [8]. (B2) and
(B3) ensure the identifiability of the estimates. (B4), on the
other hand, requires some uniform continuity in its second-
order differentiation, for example, (B4) naturally holds when
ρ′′(·) is a Lipschitz continuous function, and as we will see
later, (B4) is mild for the loss functions induced from the
relative error criteria. (B5) ensures the consistency of co-
variance estimator.

3. ASYMPTOTIC PROPERTIES OF THE
PARAMETER ESTIMATORS

Unless otherwise mentioned, all limits as n goes to infin-
ity.

The main conclusions about the asymptotic properties of
the regression estimators and covariance estimators are as
follows.

Theorem 3.1. For the divergent-dimensional AFT model
(1), if the conditions (A3) on pn and dn, (B1)–(B4) on ρ(·)
and ε hold, then

(i) (Consistency) β̂n, the local minimal point of ψn(β), ex-
ists and satisfies∥∥S1/2

n

(
β̂n − β∗

n

)∥∥ = Op(
√
pn),

where ‖x‖ = (
∑

j x
2
j )

1
2 and β∗

n is the true value of the
parameter.

(ii) (Asymptotic normality) For a known numerical matrix
An with order m× pn, if AnA

T
n converges to a positive

definite symmetric matrix G with order m × m, i.e.
AnA

T
n → G > 0, then

AnS
1/2
n

(
β̂n − β∗

n

) D→ N
(
0, τ−2σ2G

)
.

For statistical inference needs, the asymptotic covariance
matrix needs to be estimated too, which leads to the estima-
tion of τ and σ2. Denoted ek = log yk − xT

k β̂n as residuals,

the classical simple estimators of τ and σ2 are given by [18]
τ̂ = 1

n

∑n
k=1 ρ

′′(ek) and σ̂2 = 1
n−pn

∑n
k=1 |ρ′(ek)|2, respec-

tively, but their asymptotic properties are unclear. To this
end, we propose two new reweighted estimates

τ̂n =
1

pn

n∑
k=1

ρ′′(ek) · xT
k S

−1
n xk,

σ̂2
n =

1

pn

n∑
k=1

∣∣ρ′(ek)∣∣2 · xT
k S

−1
n xk.

For notation simplicity, we drop the subscript n of τ̂n and σ̂2
n.

Their consistencies are as follows.

Theorem 3.2. Under the conditions of Theorem 3.1,

(i) τ̂
p→ τ ,

(ii) Furthermore, if condition (B5) holds, then σ̂2 p→ σ2.

4. ESTIMATORS BASED ON TWO
RELATIVE ERROR CRITERIA

In this section, we examine estimators based on two rela-
tive error criteria: the Relative Least Squares (RLS) estima-
tor and the Least Product Relative Errors (LPRE) estimator

[13]. Their pre-transformed loss functions are (y−exp (xT β)
y )2

for RLS, and |y−exp (xT β)
y | × |y−exp (xT β)

exp (xT β)
| for LPRE. The

loss functions after transformation are ρ(t) = (1− e−t)2 for
RLS, and ρ(t) = et+ e−t− 2 for LPRE respectively. Denote
M(t) = Eetε = Eεt, which is the moment-generating func-
tion of ε. Using Theorem 3.1 and Theorem 3.2, we have the
following two corollaries.

Corollary 4.1. For the RLS estimator under the relative
least squares criterion for the divergent-dimensional AFT
model (1), if the condition (A3) holds, M(−4) < +∞ and
M(−1) = M(−2), then the conclusions of Theorem 3.1 hold,
where τ = 2M(−1) and σ2 = 4[M(−4)−2M(−3)+M(−2)].
Furthermore, if M(−8) < +∞, then conclusions of Theo-
rem 3.2 also hold.

Corollary 4.2. For the LPRE estimator under the rela-
tive least product absolute relative errors criterion for the
dimension-changeable AFT model (1), if the condition (A3)
holds, M(±2) < +∞ and M(1) = M(−1), then the con-
clusions of Theorem 3.1 hold, where τ = 2M(1) and σ2 =
M(2) + M(−2) − 2. Furthermore, if M(±4) < +∞, then
conclusions of Theorem 3.2 also hold.

5. VARIABLE SELECTION UNDER
GENERALIZED RELATIVE ERROR

CRITERION

In this section, we study the penalized variable selection
method of AFT model under general relative error criterion.
We introduce regularity conditions, prove the oracle prop-
erties of parameter estimators and give an estimation of the
covariance matrix.
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5.1 Model and parameter estimation

Consider the AFT model (1) or its linear form (2). As-
sume the pn-dimensional covariate β∗

n only has first qn el-
ements which are nonzero. Variables are selected by mini-
mizing the following objective function:

Qn(β) =
1

n

n∑
k=1

ρ
(
log yk − xT

k β
)
+

pn∑
j=1

pλn(|βj |).

The first term is the average loss and the second term is
the penalty function controlling the shrinkage amount of
estimators. λn is a preset threshold which represents the
strength of penalty.

5.2 Regularity conditions

5.2.1 Regularity conditions on dimension and covariates

In this section, we further assume:

(A4) There are two positive constants r and R such that

0 < r < Ωmin(Sn/n) < Ωmax(Sn/n) < R < ∞,

where Ωmin(Sn/n) and Ωmax(Sn/n) are the largest and
smallest eigenvalue of matrix Sn/n.

(A5) p2n/n → 0.

5.2.2 Regular conditions on penalty function and threshold

Consider the following regularity conditions: Denote

an = max
1≤j≤pn

{∣∣p′λn

(
|β∗(j)

n |
)∣∣, β∗(j)

n �= 0
}
,

bn = max
1≤j≤pn

{∣∣p′′λn

(
|β∗(j)

n |
)∣∣, β∗(j)

n �= 0
}
,

cn = min
1≤j≤pn

{
|β∗(j)

n |, β∗(j)
n �= 0

}
,

and denote by rn = qn/pn be the proportion of nonzero
elements in β∗

n. Consider the following regularity conditions:

(C1) an = O(1/
√
nrn);

(C2) bn → 0;
(C3) lim infn→∞ lim infθ→0+ p′λn

(θ)/λn > 0;

(C4)
√
pn/n = o(λn);

(C5) λn = o(cn);
(C6) There exists two positive constants C and D such that

if θ1, θ2 > Cλn, then∣∣p′′λn
(θ1)− p′′λn

(θ2)
∣∣ ≤ D|θ1 − θ2|;

(C7) an = o(1/
√
nqn);

(C8) bn = o(1/
√
pn).

Conditions (C1) and (C2) ensure the existence and√
n/pn-consistency of the estimator. Condition (C3) re-

quires the singularity of penalty function at zero. (C3) and
(C4) ensure the model is able to select the true model with
probability tends to 1. Condition (C4) requries the rate of

convergence of λn to zero not faster than
√
pn/n and condi-

tion (C5) requires the convergence rate not slower than cn.
Condition (C6) imposes restrictions on the smoothness of
penalty function, together with condition (C5) ensure the
asymptotic normality of the estimator. If we further assume
(C7) and (C8), then the bias and variance caused by penalty
function can be neglected, and the efficiency of the estima-
tors follows, that is, the estimator has the same asymptotic
distribution as it is under the true model.

5.3 Oracle properties of parameter
estimation

Let x̄k = (x
(1)
k , . . . , x

(qn)
k )T be the first qn elements of xk.

Denote

Sn1 =

n∑
k=1

x̄kx̄
T
k ,

Σλn = diag
{
p′′λn

(
|β∗(1)

n |
)
, . . . , p′′λn

(
|β∗(qn)

n |
)}

,

bλn =
{
p′λn

(
|β∗(1)

n |
)
sgn

(
β∗(1)
n

)
, . . . ,

p′λn

(
|β∗(qn)

n |
)
sgn

(
β∗(qn)
n

)}T
,

where sgn(·) represents the sign function. The main theorem
of oracle properties are as follows.

Theorem 5.1. Assume β∗
n =

(
β∗
n1
0

)
has only qn non-zero el-

ements. Then, under conditions (A3)–(A4), (B1)–(B4) and
(C1)–(C2), we have

(i) (Consistency of estimation) Qn(β) has a local mini-

mum β̂n satisfying

∥∥β̂n − β∗
n

∥∥ = Op

(√
pn
n

)
.

(ii) (Consistency of model selction) If we further assume
(C3)–(C4), then the above

√
n/pn-consistent estimator

β̂n =
( β̂n1

β̂n2

)
select the true model with probability tends

to 1, that is,

P{β̂n2 = 0} → 1.

(iii) (Asymptotic normality) If we further assume conditions
(A5) and (C5)–(C6) hold and BnB

T
n converges to a

m ×m-dimensional positive-definite matrix G, that is,
BnB

T
n → G > 0 for m × qn-dimensional numerical

matrix Bn, then

BnΣnS
1/2
n1

(
β̂n1 − β∗

n1 + δ∗n
) D→ N

(
0, τ−2σ2G

)
,

where

Σn = Iqn + nτ−1
(
S
−1/2
n1

)T
Σλn

(
S
−1/2
n1

)
,

δ∗n = [τSn1/n+Σλn ]
−1bλn ,

are the additional variance and bias caused by the
penalty term respectively. Furthermore, if conditions
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(C7)–(C8) holds, then the estimation is efficient, which
means:

BnS
1/2
n1

(
β̂n1 − β∗

n1

) D→ N
(
0, τ−2σ2G

)
.

5.4 Estimation of covariance matrix and bias

Denote the covariance matrix and bias of β̂n1 by

Covn = τ−2σ2
(
S
−1/2
n1

)T
Σ−2

n

(
S
−1/2
n1

)
,

δ∗n = [τSn1/n+Σλn ]
−1bλn

= nτ−1
(
S
−1/2
n1

)
Σ−1

n

(
S
−1/2
n1

)T
bλn ,

and their corresponding estimators by

Ĉovn = τ−2σ2
(
S
−1/2
n1

)T
Σ̂−2

n

(
S
−1/2
n1

)
,

δ̂∗n = nτ−1
(
S
−1/2
n1

)
Σ̂−1

n

(
S
−1/2
n1

)T
b̂λn ,

where

Σ̂n = Iqn + nτ−1
(
S
−1/2
n1

)T
Σ̂λn

(
S
−1/2
n1

)
,

Σ̂λn = diag
{
p′′λn

(
|β̂(1)

n |
)
, . . . , p′′λn

(
|β̂(qn)

n |
)}

,

b̂λn =
{
p′λn

(
|β̂(1)

n |
)
sgn

(
β̂(1)
n

)
, . . . , p′λn

(
|β̂(qn)

n |
)
sgn

(
β̂(qn)
n

)}T
.

We first point out that ‖Ĉovn‖ = ‖Covn‖ = Op(
1
n ),

‖δ̂∗n‖ = ‖δ∗n‖ = Op(
√

pn

n ), which can be obtained by A.5.
Furthermore, we have

Theorem 5.2. Under condition (A3)–(A5), (B1)–(B4) and
(C1)–(C6), the estimation of covariance matrix and bias has
the following consistency:

(i) ‖Covn − Ĉovn‖ = op(
1
n );

(ii) ‖δ∗n − δ̂∗n‖ = op(
√

pn

n ).

The proof will be given in the Appendix A. The above re-
sult mainly focused on the asymptotic properties of the pro-
posed estimator. As suggested by an anonymous reviewer,
we also derive the oracle inequality of the estimator under
mild conditions. We present the technical conditions and
main results in Appendix B.

6. SIMULATION

In this section, we evaluate the performance of the three
estimators LS, RLS and LPRE through random simulations.
The simulations are set as follows: the sample sizes n are
taken to be 100, 200, 400 and 800, and the dimensions of
the covariates pn are 7, 8, 10 and 12, respectively. The co-
variates are designed as xT

k = (1, k/n, zTk ), where zk is a
simple random sample from a pn − 2 dimensional normal
distribution N (0,Σ), where Σ(i, j) = 0.5|i−j| and the re-
gression coefficients of the covariates are set as βj =

√
j−1.

Then we consider three types of error distributions:

• ε ∼ N (0, 1), the standard normal distribution;

• ε ∼ U(−2, 2), a uniform distribution over the interval
[−2, 2];

• ε ∼ f∗(t) ∝ exp(−{et + e−t}), which makes LPRE effi-
cient as MLE.

Finally we generate the response variables through the
model and use three methods to estimate parameters and
their covariance matrix. We repeat this simulation 500 times
and part of the results are summarized in the following Ta-
ble 1 and more simulation results are deferred to Appendix C
in Tables 2 and 3. The simulation results show that, except
for the two RLS estimates under normal and uniform error
distributions, as the sample size n and parameter dimension
pn increase, we have (1) ‖β̂n − β∗

n‖2 and its standard devia-
tion both approach to zero, which supports the consistency
of estimators; (2) the estimates of τ , σ2 and τ−2σ2 are all be-
coming more accurate and their standard deviations are all
becoming smaller as sample size n increases, which supports
the consistency of τ̂ , σ̂2 and τ̂−2σ̂2 (3) the estimates bias for
each component βj of the regression coefficient, biases are
all around 0, indicating that the parameter estimates are
asymptotically unbiased; estimated empirical standard de-
viation, the mean of the estimated standard deviation and
theoretical asymptotic standard deviation are very close to
each other, indicating that the variance estimates are cor-
rectly available.

While the RLS estimation is more complicated, we find
(1) the estimates of regression parameters and variances are
very unstable under normal error distribution, (2) under the
uniform error distribution, the estimates of the regression
coefficients are still unstable, but the estimates of the vari-
ances are shown to be accurate, (3) under the f∗ error distri-
bution, the estimation of both its regression coefficient and
variance are accurate. This indicates that the RLS estima-
tion, despite its theoretical large sample properties, is very
sensitive to the error distribution in the case of limited sam-
ple size; for those inappropriate error distributions, a very
large sample size may be required to ensure a better esti-
mate. The LS and LPRE estimation, on the other hand, are
more stable in the simulations, and they are optimal for each
white effective error distribution, but the LPRE estimates
perform better under uniform error distributions.

Simulations are also conducted to compare the perfor-
mance of different variable selection methods. We examines
three kind of loss function:

1. ρ(t) = t2, denoted as “LS”,
2. ρ(t) = et + e−t − 2, denoted as “LPRE”,
3. ρ(t) = e0.4t + e−0.4t − 2, denoted as “GREC”.

The tuning parameter λ is chosen according to a fivefold
cross-validation (denoted as “CV”) procedure or minimizing
the Bayesian information criterion (denoted as “BIC”). The
CV approach is as follows: Denote the full dataset by D.
We randomly divide D into five approximately equal-sized
subsets D1, . . . ,D5 and denote the training and validation
sets by D − Dv and Dv respectively, where v = 1, 2, . . . , 5.
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Table 1. Estimates of the main model statistics.

n pn ||β̂n − β∗
n||2 τ̂ σ̂2 τ̂−2σ̂2

error distribution ε ∼ N (0, 1)
LS τ = 2.00 σ2 = 4.00 τ−2σ2 = 1.00

100 7 0.24 (0.23) – 3.65 (0.61) 0.91 (0.15)
200 8 0.14 (0.13) – 3.76 (0.43) 0.94 (0.11)
400 10 0.07 (0.05) – 3.87 (0.29) 0.97 (0.07)
800 12 0.04 (0.03) – 3.93 (0.21) 0.98 (0.05)

RLS τ = 0.74 σ2 = 23.03 τ−2σ2 = 42.5
100 7 5.31 (50.1) 1.05 (0.19) 0.97 (0.30) 0.89 (0.33)
200 8 15.7 (191) 0.95 (0.16) 1.36 (0.37) 1.53 (0.56)
400 10 8.14 (102) 0.90 (0.14) 1.86 (0.52) 2.37 (0.92)
800 12 30.8 (326) 0.84 (0.12) 2.62 (0.68) 3.72 (1.33)

LPRE τ = 3.30 σ2 = 12.78 τ−2σ2 = 1.18
100 7 0.26 (0.24) 3.15 (0.24) 9.48 (3.82) 0.92 (0.22)
200 8 0.15 (0.14) 3.19 (0.17) 10.30 (2.98) 0.99 (0.18)
400 10 0.08 (0.06) 3.24 (0.12) 11.18 (2.41) 1.06 (0.16)
800 12 0.05 (0.03) 3.27 (0.09) 11.95 (2.04) 1.11 (0.14)

error distribution ε ∼ U(−2, 2)
LS τ = 2.00 σ2 = 5.33 τ−2σ2 = 1.33

100 7 0.35 (0.31) – 4.79 (0.57) 1.20 (0.14)
200 8 0.18 (0.15) – 5.02 (0.40) 1.25 (0.10)
400 10 0.09 (0.07) – 5.14 (0.26) 1.28 (0.06)
800 12 0.06 (0.04) – 5.21 (0.19) 1.30 (0.05)

RLS τ = 0.96 σ2 = 0.60 τ−2σ2 = 0.64
100 7 20.3 (351) 1.02 (0.16) 0.55 (0.16) 0.52 (0.16)
200 8 9.83 (115) 0.99 (0.12) 0.58 (0.13) 0.59 (0.14)
400 10 27.5 (297) 0.97 (0.13) 0.59 (0.11) 0.61 (0.12)
800 12 33.1 (356) 0.97 (0.12) 0.60 (0.09) 0.63 (0.10)

LPRE τ = 3.63 σ2 = 11.64 τ−2σ2 = 0.89
100 7 0.25 (0.23) 3.46 (0.19) 10.40 (1.73) 0.86 (0.06)
200 8 0.13 (0.11) 3.53 (0.13) 10.94 (1.17) 0.87 (0.03)
400 10 0.07 (0.05) 3.57 (0.08) 11.25 (0.75) 0.88 (0.02)
800 12 0.04 (0.03) 3.59 (0.06) 11.38 (0.55) 0.88 (0.01)

error distribution ε ∼ f∗(t)
LS τ = 2.00 σ2 = 1.66 τ−2σ2 = 0.41

100 7 0.11 (0.10) – 1.52 (0.23) 0.38 (0.06)
200 8 0.06 (0.05) – 1.58 (0.17) 0.39 (0.04)
400 10 0.03 (0.02) – 1.61 (0.12) 0.40 (0.03)
800 12 0.02 (0.01) – 1.63 (0.08) 0.41 (0.02)

RLS τ = 1.35 σ2 = 2.21 τ−2σ2 = 1.21
100 7 0.24 (0.22) 1.42 (0.15) 0.92 (0.29) 0.47 (0.18)
200 8 0.13 (0.11) 1.40 (0.11) 1.19 (0.33) 0.62 (0.20)
400 10 0.09 (0.07) 1.38 (0.08) 1.40 (0.31) 0.75 (0.19)
800 12 0.04 (0.03) 1.37 (0.05) 1.60 (0.31) 0.86 (0.19)

LPRE τ = 2.46 σ2 = 2.46 τ−2σ2 = 0.41
100 7 0.11 (0.10) 2.42 (0.07) 2.19 (0.45) 0.37 (0.06)
200 8 0.06 (0.05) 2.43 (0.05) 2.29 (0.33) 0.39 (0.04)
400 10 0.03 (0.02) 2.44 (0.04) 2.36 (0.24) 0.40 (0.03)
800 12 0.02 (0.01) 2.45 (0.02) 2.40 (0.17) 0.40 (0.02)

Note 1: Based on 500 simulations, means of estimators are outside the parentheses
and standard deviations are inside the parentheses.

Note 2: Since τ = 2 is not estimated for LS, it is indicated by “–”.
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Table 2. Random Simulation: Estimates of regression parameters and standard deviation: each error distribution and loss
function.

(×10−2) LS RLS LPRE
n 100 200 400 800 100 200 400 800 100 200 400 800
pn 7 8 10 12 7 8 10 12 7 8 10 12

error distribution ε ∼ N (0, 1)

β̂1 Bias −1 1 0 0 −1 −4 19 −37 0 1 0 0
SE 10 14 20 7 238 322 173 474 11 15 21 8

SEE 10 14 20 7 15 17 19 13 10 14 20 7
t.SE 10 14 21 7 66 94 135 46 11 16 22 8

β̂2 Bias 1 −1 1 0 −11 −20 −3 −22 1 −2 1 1
SE 17 25 35 12 124 178 110 230 18 26 36 13

SEE 17 24 34 12 26 30 33 23 18 25 34 13
t.SE 17 25 36 12 114 162 232 80 19 27 39 13

β̂3 Bias 0 0 0 0 1 4 −1 1 0 0 0 0
SE 6 8 12 4 36 55 33 53 6 9 12 4

SEE 6 8 11 4 9 10 11 8 6 8 11 4
t.SE 6 8 12 4 38 54 78 27 6 9 13 4

β̂4 Bias 1 0 0 0 2 4 1 1 0 0 −1 0
SE 7 10 14 4 31 55 69 51 7 10 14 5

SEE 6 9 13 5 10 11 12 9 7 9 13 5
t.SE 7 9 13 5 43 61 87 30 7 10 15 5

β̂5 Bias 0 −1 0 0 0 −4 2 0 0 −1 1 0
SE 6 10 13 5 27 63 42 50 7 10 14 5

SEE 6 9 13 5 10 11 12 9 7 9 13 5
t.SE 7 9 13 5 43 61 88 30 7 10 15 5

β̂6 Bias 0 0 −1 0 2 1 0 1 0 0 −1 0
SE 7 9 13 4 39 55 38 40 7 10 14 5

SEE 6 9 13 5 10 11 12 9 7 9 13 5
t.SE 7 9 13 5 43 61 88 30 7 10 15 5

β̂7 Bias 0 0 0 0 −1 4 1 4 0 0 −1 0
SE 7 10 12 5 26 68 40 75 7 10 12 5

SEE 6 9 11 5 10 11 11 9 7 9 11 5
t.SE 7 9 12 5 43 61 78 30 7 10 13 5

β̂8 Bias – 0 0 0 – 2 2 −3 – 0 0 0
SE – 7 8 4 – 32 63 45 – 7 9 5

SEE – 6 8 5 – 10 10 9 – 7 8 5
t.SE – 7 8 5 – 43 54 30 – 7 9 5

β̂9 Bias – – 0 0 – – 2 −2 – – 0 0
SE – – 6 5 – – 51 47 – – 7 5

SEE – – 6 5 – – 10 9 – – 7 5
t.SE – – 7 5 – – 43 30 – – 7 5

β̂10 Bias – – 0 0 – – 0 4 – – 0 0
SE – – 6 5 – – 25 71 – – 6 5

SEE – – 6 5 – – 9 9 – – 6 5
t.SE – – 6 5 – – 38 30 – – 6 5

β̂11 Bias – – – 0 – – – 1 – – – 0
SE – – – 4 – – – 57 – – – 5

SEE – – – 5 – – – 9 – – – 5
t.SE – – – 5 – – – 30 – – – 5

β̂12 Bias – – – 0 – – – 1 – – – 0
SE – – – 4 – – – 41 – – – 5

SEE – – – 4 – – – 8 – – – 4
t.SE – – – 4 – – – 27 – – – 4
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Table 2. (Continued.)

(×10−2) LS RLS LPRE
n 100 200 400 800 100 200 400 800 100 200 400 800
pn 7 8 10 12 7 8 10 12 7 8 10 12

error distribution ε ∼ U(−2, 2)

β̂1 Bias −2 0 −2 0 −47 −19 −22 −53 −2 0 −1 0
SE 11 17 24 8 450 268 381 500 9 14 20 7

SEE 11 16 23 8 8 11 15 6 10 13 19 7
t.SE 12 17 24 8 8 12 17 6 10 14 19 7

β̂2 Bias 1 −2 −1 −1 −24 −11 −16 −26 1 −2 −2 −1
SE 19 28 41 14 220 130 175 238 16 24 35 12

SEE 20 28 39 14 14 19 25 10 16 23 33 12
t.SE 20 29 41 14 14 20 29 10 16 23 33 12

β̂3 Bias 0 1 −1 0 −4 1 0 0 0 1 −1 0
SE 7 10 14 5 59 48 44 78 6 9 12 4

SEE 7 9 13 5 5 6 9 3 5 8 11 4
t.SE 7 10 14 5 5 7 10 3 5 8 11 4

β̂4 Bias 0 −1 0 0 −3 −1 −3 3 0 −1 0 0
SE 8 12 16 5 42 32 72 56 7 10 14 4

SEE 7 10 15 5 5 7 10 4 6 9 12 4
t.SE 8 11 15 5 5 8 11 4 6 9 13 4

β̂5 Bias 0 0 1 0 −1 3 0 0 0 0 1 0
SE 8 11 16 6 69 33 47 50 6 9 14 5

SEE 7 10 15 5 5 7 10 4 6 9 12 4
t.SE 8 11 16 5 5 7 11 4 6 9 13 4

β̂6 Bias 0 0 −1 0 0 1 −4 3 0 0 −1 0
SE 8 11 16 5 58 39 119 31 7 9 13 4

SEE 7 10 15 5 5 7 10 4 6 9 12 4
t.SE 8 11 16 5 5 7 11 4 6 9 13 4

β̂7 Bias 0 0 1 0 −1 0 0 2 0 0 1 0
SE 8 12 14 6 56 43 60 26 7 10 12 5

SEE 7 10 13 5 5 7 9 4 6 9 11 4
t.SE 8 11 14 5 5 7 10 4 6 9 11 4

β̂8 Bias – 0 0 0 – −3 1 3 – 0 0 0
SE – 8 10 6 – 41 41 47 – 6 8 5

SEE – 7 9 5 – 5 6 4 – 6 8 4
t.SE – 8 10 5 – 5 7 4 – 6 8 4

β̂9 Bias – – 0 0 – – −1 0 – – 0 0
SE – – 7 6 – – 41 32 – – 6 5

SEE – – 7 5 – – 5 4 – – 6 4
t.SE – – 8 5 – – 5 4 – – 6 4

β̂10 Bias – – 0 0 – – 0 −1 – – 0 0
SE – – 7 6 – – 40 26 – – 6 5

SEE – – 7 5 – – 5 4 – – 5 4
t.SE – – 7 5 – – 5 4 – – 6 4

β̂11 Bias – – – −1 – – – −1 – – – 0
SE – – – 5 – – – 37 – – – 4

SEE – – – 5 – – – 4 – – – 4
t.SE – – – 5 – – – 4 – – – 4

β̂12 Bias – – – 0 – – – −2 – – – 0
SE – – – 5 – – – 45 – – – 4

SEE – – – 5 – – – 3 – – – 4
t.SE – – – 5 – – – 3 – – – 4
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Table 2. (Continued.)

(×10−2) LS RLS LPRE
n 100 200 400 800 100 200 400 800 100 200 400 800
pn 7 8 10 12 7 8 10 12 7 8 10 12

error distribution ε ∼ f∗(t)

β̂1 Bias −1 0 0 0 2 4 8 2 −1 0 0 0
SE 7 10 13 5 11 15 20 7 7 10 13 5

SEE 6 9 13 5 9 11 14 7 6 9 13 5
t.SE 7 9 13 5 11 16 23 8 6 9 13 5

β̂2 Bias 1 0 −1 0 0 0 −2 −1 1 0 −1 0
SE 11 16 24 8 19 24 34 13 11 16 24 8

SEE 11 16 22 8 15 19 24 11 11 15 22 8
t.SE 11 16 23 8 19 27 39 14 11 16 23 8

β̂3 Bias 0 0 0 0 0 0 −1 0 0 0 0 0
SE 4 6 8 3 6 8 12 4 4 6 7 3

SEE 4 5 7 3 5 6 8 4 4 5 7 3
t.SE 4 5 8 3 6 9 13 5 4 5 8 3

β̂4 Bias 0 0 0 0 0 0 0 0 0 0 0 0
SE 4 6 8 3 7 9 13 5 4 6 8 3

SEE 4 6 8 3 6 7 9 4 4 6 8 3
t.SE 4 6 9 3 7 10 15 5 4 6 9 3

β̂5 Bias 0 0 0 0 0 0 −1 0 0 0 0 0
SE 4 6 9 3 7 10 13 5 4 6 9 3

SEE 4 6 8 3 6 7 9 4 4 6 8 3
t.SE 4 6 9 3 7 10 15 5 4 6 9 3

β̂6 Bias 0 0 0 0 0 0 1 0 0 0 0 0
SE 4 6 9 3 7 9 13 5 4 6 9 3

SEE 4 6 8 3 6 7 9 4 4 6 8 3
t.SE 4 6 9 3 7 10 15 5 4 6 9 3

β̂7 Bias 0 0 0 0 0 0 0 0 0 0 0 0
SE 4 6 8 3 6 10 12 5 4 6 8 3

SEE 4 6 7 3 6 7 8 4 4 6 7 3
t.SE 4 6 8 3 7 10 13 5 4 6 8 3

β̂8 Bias – 0 0 0 – 0 0 0 – 0 0 0
SE – 4 5 3 – 7 8 5 – 4 5 3

SEE – 4 5 3 – 6 6 4 – 4 5 3
t.SE – 4 5 3 – 7 9 5 – 4 5 3

β̂9 Bias – – 0 0 – – 0 0 – – 0 0
SE – – 5 3 – – 7 5 – – 4 3

SEE – – 4 3 – – 6 4 – – 4 3
t.SE – – 4 3 – – 7 5 – – 4 3

β̂10 Bias – – 0 0 – – 0 0 – – 0 0
SE – – 4 3 – – 6 4 – – 4 3

SEE – – 4 3 – – 5 4 – – 4 3
t.SE – – 4 3 – – 6 5 – – 4 3

β̂11 Bias – – – 0 – – – 0 – – – 0
SE – – – 3 – – – 5 – – – 3

SEE – – – 3 – – – 4 – – – 3
t.SE – – – 3 – – – 5 – – – 3

β̂12 Bias – – – 0 – – – 0 – – – 0
SE – – – 3 – – – 4 – – – 3

SEE – – – 3 – – – 4 – – – 3
t.SE – – – 3 – – – 5 – – – 3

Note: Based on 500 simulations and “–” represents “not estimated”.
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Table 3. Simulation result of variable selection procedure.

Method ε ∼ N (0, 1) ε ∼ U(−2, 2) ε ∼ f∗(t)
CF FPR FNR ME CF FPR FNR ME CF FPR FNR ME

n = 100, pn = 7, qn = 2
LS 0.768 0.117 0 0.032 0.748 0.125 0 0.043 0.756 0.120 0 0.012
LPRE-CV 0.560 0.207 0 0.040 0.602 0.182 0 0.031 0.718 0.135 0 0.014
LPRE-BIC 0.722 0.118 0 0.035 0.812 0.074 0 0.028 0.886 0.044 0 0.010
GREC-CV 0.772 0.105 0 0.085 0.778 0.107 0 0.106 0.804 0.091 0 0.116
GREC-BIC 0.838 0.060 0 0.031 0.890 0.040 0 0.036 0.854 0.052 0 0.012

n = 200, pn = 8, qn = 3
LS 0.742 0.103 0 0.020 0.716 0.112 0 0.030 0.760 0.100 0 0.009
LPRE-CV 0.590 0.151 0 0.024 0.586 0.155 0 0.021 0.772 0.097 0 0.009
LPRE-BIC 0.768 0.070 0 0.023 0.84 0.044 0 0.019 0.914 0.027 0 0.007
GREC-CV 0.814 0.070 0 0.144 0.772 0.09 0 0.101 0.810 0.077 0 0.066
GREC-BIC 0.910 0.025 0 0.022 0.922 0.022 0 0.023 0.908 0.026 0 0.008

n = 400, pn = 10, qn = 4
LS 0.714 0.100 0 0.014 0.756 0.083 0 0.017 0.756 0.084 0 0.005
LPRE-CV 0.682 0.100 0 0.016 0.764 0.074 0 0.012 0.760 0.074 0 0.005
LPRE-BIC 0.830 0.040 0 0.014 0.912 0.020 0 0.015 0.936 0.016 0 0.004
GREC-CV 0.778 0.077 0 0.070 0.802 0.063 0 0.108 0.814 0.059 0 0.086
GREC-BIC 0.920 0.018 0 0.012 0.926 0.016 0 0.019 0.936 0.014 0 0.005

n = 800, pn = 12, qn = 5
LS 0.744 0.072 0 0.007 0.714 0.084 0 0.010 0.786 0.061 0 0.003
LPRE-CV 0.714 0.067 0 0.009 0.708 0.072 0 0.007 0.770 0.057 0 0.003
LPRE-BIC 0.848 0.033 0 0.008 0.934 0.012 0 0.007 0.954 0.008 0 0.003
GREC-CV 0.838 0.041 0 0.020 0.832 0.047 0 0.026 0.862 0.036 0 0.006
GREC-BIC 0.940 0.011 0 0.007 0.958 0.007 0 0.009 0.956 0.008 0 0.003

For each λ and v, we find the estimator β̂λ,n of βn using the
training set D − Dv. Then we minimize the following CV
criterion to choose λ:

CV (λ) =
5∑

v=1

∑
(yk,xk)∈Dv

ρ
(
log yk − xT

k β̂λ,n

)
,

or alternatively, minimize the following BIC criterion to
choose λ:

BIC(λ) = log

[
1

n

n∑
k=1

ρ
(
log yk − xT

k β̂λ,n

)]
+ cndfλ

logn

n
,

where dfλ represents the number of non-zero elements in
β̂λ,n and cn satisfies cnqn log(n)/n → 0 as n → ∞. For sim-
plicity, we choose cn = 1 in our simulation. As shown in
Table 3, the accuracy of model selection shows an increas-
ing trend as n

pn
grows in all settings, which agree with the

pn/n-consistency in our theory. The sensitivity to different
choices for the tuning parameters are shown in Table 3. Our
simulation results in Table 3 show that BIC outperforms
the CV criterion under general relative error settings. One
possible explanation for this phenomenon is that the CV cri-
terion primarily emphasizes prediction performance on the
validation set, while BIC focuses on constraining model com-
plexity. The LPRE based selection methods is comparable
to least square loss and GREC based selection methods out-
performs the other two methods in all cases.

7. CONCLUSIONS

In this paper, we propose a general relative error crite-
rion based estimation for the unknown parameter in the
divergent-dimensional AFT model. The consistency and
asymptotic normality of the estimators are established. Two
special cases of general relative error estimators, RLS esti-
mator and LPRE estimator, are studied. We also propose a
corresponding variable selection procedure based on penal-
ized general relative error. The oracle properties and consis-
tency of model selection are proved. The simulation results
indicate that our estimation methods are feasible.

APPENDIX A. PROOFS

Proof of Theorem 3.1. Proof of Theorem 3.1 is based on the
Taylor expansion of the objective function ψn(β) at the min-

imal point β = β̂∗
n:

ψn

(
β∗
n + γn

)
− ψn

(
β∗
n

)
=

[
ψ̇n

(
β∗
n

)]T
γn +

1

2
γT
n

[
ψ̈n

(
β∗
n + tγn

)]
γn,

(3)

where t ∈ [0, 1] and

ψ̇n(β) =
∂

∂β
ψn(β) = −

n∑
k=1

ρ′
(
εk − xT

k

(
β − β∗

n

))
xk,

ψ̈n(β) =
∂2

∂β∂β′ψn(β) =

n∑
k=1

ρ′′
(
εk − xT

k

(
β − β∗

n

))
xkx

T
k .
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We first point out the following facts about the covariates.

Lemma A.1. Denote zk = (S
−1/2
n )Txk, we have

(i) ‖zkzTk ‖ ≤ ‖zk‖2 ≤ dn;
(ii)

∑n
k=1 zkz

T
k = Ipn ;

(iii)
∑n

k=1 ‖zk‖2 = pn.

Proof of Lemma A.1. The proof is straightforward, the de-
tails are omitted.

Now we show that terms in the Taylor expansion (3) have
the following properties.

Lemma A.2. Denote Wn(β)=(S
−1/2
n )T ψ̇n(β) and Vn(β) =

(S
−1/2
n )T ψ̈n(β)S

−1/2
n ,

(i) ‖Wn(β
∗
n)‖ = Op(

√
pn) under conditions (B1) and (B2);

(ii) If AnA
T
n → G > 0, then AnWn(β

∗
n)

D→ N (0, σ2G) un-
der conditions (A1), (B1) and (B2);

(iii) If α2
npndn → 0, then ‖Vn(β

∗
n)− τIpn‖ = op(α

−1
n ) under

conditions (B1) and (B3);

(iv) If ‖S1/2
n γn‖ = Op(

√
pn), α2

np
3
ndn → 0 and αnpn →

+∞, then supt∈[0,1] ‖Vn(β
∗
n+ tγn)−Vn(β

∗
n)‖ = op(α

−1
n )

under conditions (B1) and (B4).

Proof of Lemma A.2(i). For notation simplicity, denote
Wn = Wn(β

∗
n), then it is straightforward to calculate

Wn =
(
S−1/2
n

)T [
ψ̇n

(
β∗
n

)]
=

(
S−1/2
n

)T n∑
k=1

ρ′(εk)xk

=

n∑
k=1

ρ′(εk)zk = Ze,

where Z = (z1, . . . , zn) is a pn × n-dimensional matrix, e =
(ρ′(ε1), . . . , ρ

′(εn))
T is an n-dimensional vector, thus,

P
{
‖Wn‖ > C

}
≤ C−2 · E‖Wn‖2 = C−2 · E tr

(
eTZT

Ze
)

= C−2 · E tr
(
Z
T
ZeeT

)
= C−2 · tr

(
Z
T
ZE eeT

)
= C−2 · tr

(
Z
T
Z

)
· σ2 = C−2 · tr

(
ZZ

T
)
· σ2

= C−2 · pn · σ2,

and ‖Wn‖ = Op(
√
pn) follows.

Proof of Lemma A.2(ii). It follows from Cramer-Wold de-
vice that (ii) holds if and only if for all s ∈ R

m,

sTAnWn
D→ N

(
0, σ2sTGs

)
.

Denote Zk = ρ′(εk)s
TAnzk, then sTAnWn =

∑n
k=1 Zk and

Zk satisfies

E Zk = 0,
n∑

k=1

E
(
Z2
k

)
=

n∑
k=1

E
[
ρ′(εk)

]2|sTAnzk|2

= σ2sTAn

(
n∑

k=1

zkz
T
k

)
AT

ns

= σ2sT
(
AnA

T
n

)
s → σ2sTGs.

For any ε > 0,

n∑
k=1

E
(
|Zk|2; |Zk|2 > ε

)
=

n∑
k=1

|sTAnzk|2 · E
(
|ρ′(εk)|2;

∣∣ρ′(εk)∣∣2 >
ε

|sTAnzk|2
)

≤
n∑

k=1

|sTAnzk|2 ·E
(
|ρ′(εk)|2;

∣∣ρ′(εk)∣∣2> ε

‖s‖2 ·‖An‖2 ·‖zk‖2
)

≤ sT
(
AnA

T
n

)
s · E

(
|ρ′(ε)|2;

∣∣ρ′(ε)∣∣2 >
ε

‖s‖2 · ‖An‖2 · dn

)
→ 0.

The last equality holds because ‖An‖ = O(1), which follows
from

‖An‖2 ≤ ‖An‖2F = tr
(
AnA

T
n

)
→ tr(G) > 0.

The conclusion can be verified by Lindeberg-Feller central
limit theorem.

Proof of Lemma A.2(iii). For notation simplicity, denote
Vn = Vn(β

∗
n), then

Vn =
(
S−1/2
n

)T [
ψ̈n

(
β∗
n

)]
S−1/2
n

=
(
S−1/2
n

)T[
n∑

k=1

ρ′′(εk)xkx
T
k

]
S−1/2
n

=

n∑
k=1

ρ′′(εk)zkz
T
k ,

then E(Vn) = τIpn and for any ε > 0,

P
{
αn‖Vn − τIpn‖ > ε

}
≤ α2

n

ε2
· E‖Vn − τIpn‖2

=
α2
n

ε2
· E

∥∥∥∥∥
n∑

k=1

(
ρ′′(εk)− τ

)
· zkzTk

∥∥∥∥∥
2

≤ α2
n

ε2
· E

∥∥∥∥∥
n∑

k=1

(
ρ′′(εk)− τ

)
· zkzTk

∥∥∥∥∥
2

F
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=
α2
n

ε2
· E

pn∑
i=1

pn∑
j=1

(
n∑

k=1

(
ρ′′(εk)− τ

)
· z(i)k z

(j)
k

)2

=
α2
n

ε2
·

pn∑
i=1

pn∑
j=1

n∑
k=1

(
var

(
ρ′′(εk)

)
· |z(i)k z

(j)
k |2

)
=

var(ρ′′(ε))

ε2
· α2

n ·
n∑

k=1

‖zk‖4

≤ var(ρ′′(ε))

ε2
· α2

n · pn · dn → 0,

and the conclusion follows.

Proof of Lemma A.2(iv). Note that

Bn(γn)

:= sup
t∈[0,1]

∥∥(
S−1/2
n

)T [
ψ̈n

(
β∗
n + tγn

)
− ψ̈n

(
β∗
n

)]
S−1/2
n

∥∥
= sup

t∈[0,1]

∥∥∥∥∥(
S−1/2
n

)T[
n∑

k=1

[
ρ′′

(
εk − txT

k γn
)

− ρ′′(εk)
]
xkx

T
k

]
S−1/2
n

∥∥∥∥∥
= sup

t∈[0,1]

∥∥∥∥∥
n∑

k=1

[
ρ′′

(
εk − tzTk vn

)
− ρ′′(εk)

]
zkz

T
k

∥∥∥∥∥,
where vn = S

1/2
n γn and ‖vn‖ = ‖S1/2

n γn‖ = Op(
√
pn). Let

ω(u, δ) = sup
t:|t|≤δ

∣∣ρ′′(u+ t)− ρ′′(u)
∣∣

be the oscillation of ρ′′(·) in the δ-neighborhood (u−δ, u+δ)
with respect to u. We first deal with the case when ‖vn‖ =
O(

√
pn). For any ε > 0,

P
{
αnBn(γn) > ε

}
≤ α2

n

ε2
· E

{
sup

t∈[0,1]

∥∥∥∥∥
n∑

k=1

[
ρ′′

(
εk − tzTk vn

)
− ρ′′(εk)

]
· zkzTk

∥∥∥∥∥
2}

≤ α2
n

ε2
· E

{
sup

t∈[0,1]

n∑
k=1

|ρ′′
(
εk − tzTk vn

)
− ρ′′(εk)| ·

∥∥zkzTk ∥∥}2

≤ α2
n

ε2
· E

{
n∑

k=1

ω
(
εk, |zTk vn|

)
·
∥∥zkzTk ∥∥}2

≤ α2
n

ε2
·
{

n∑
k=1

Eω2
(
εk, |zTk vn|

)}{
n∑

k=1

∥∥zkzTk ∥∥2

}
.

Since |zTk vn| ≤ ‖zk‖‖vn‖ ≤
√
dnpn and α2

np
3
ndn → 0 with

αnpn → +∞ implies condition (A2), thus follows from con-
dition (B4),

Eω2
(
εk, |zTk vn|

)
= O(1) · |zTk vn|2,

holds uniformly in k, therefore,

P
{
αnBn(γn) > ε

}
≤ α2

n

ε2
·
{

n∑
k=1

Eω2
(
εk, |zTk vn|

)}{
n∑

k=1

∥∥zkzTk ∥∥2

}

≤ α2
n

ε2
·
{
O(1)

n∑
k=1

|zTk vn|2
}{

n∑
k=1

‖zk‖4
}

≤ α2
n

ε2
·
{
O(1)

(
n∑

k=1

‖zk‖2
)
‖vn‖2

}
· pndn

=
O(1)

ε2
· α2

n · p3n · dn → 0.

Now we deal with the general case ‖vn‖ = Op(
√
pn). For

any given ε > 0, M > 0,

P
{
αnBn(γn) > ε

}
≤ P

{
αnBn(γn) > ε; ‖vn‖ ≤ M

}
+ P

{
‖vn‖ > M

}
.

The conclusion follows from choosing a sufficiently large M
so that the second term can be sufficiently small and the
first term converges to zero for any fixed M .

Proof of Theorem 3.1(i): Consistency. The local minimum

β̂n of ψn(β) satisfying ‖S1/2
n (β̂n−β∗

n)‖ = Op(
√
pn) is equiv-

elent to: for any δ > 0, there exists C > 0,

P

{
inf

u:‖u‖=C
ψn

(
β∗
n +

√
pnS

−1/2
n u

)
> ψn

(
β∗
n

)}
≥ 1− δ,

for sufficiently large n, which means there exists a local min-

imum β̂n in the ball {β∗
n +

√
pnS

−1/2
n u : ‖u‖ ≤ C} with

probability tending to 1. Let γn =
√
pnS

−1/2
n u, using the

Taylor expansion in (3), we have

ψn

(
β∗
n +

√
pnS

−1/2
n u

)
− ψn

(
β∗
n

)
= ψ̇n

(
β∗
n

)T (√
pnS

−1/2
n u

)
+

1

2

(√
pnS

−1/2
n u

)T [
ψ̈n

(
β∗
n + tγn

)](√
pnS

−1/2
n u

)
=

√
pnW

T
n u+

1

2
pnu

T {τIpn + J1n + J2n}u,

where

J1n =
(
S−1/2
n

)T [
ψ̈n

(
β∗
n

)]
S−1/2
n − τIpn ,

J2n =
(
S−1/2
n

)T [
ψ̈n

(
β∗
n + tγn

)
− ψ̈n

(
β∗
n

)]
S−1/2
n .

A.2(i) shows ‖Wn‖ = Op(
√
pn). Take αn = 1 in A.2(iii) and

A.2(iv), then condition (A3) implies ‖J1n‖ = op(1/pn) and
‖J2n‖ = op(1). Hence,

P

{
inf

u:‖u‖=C
ψn

(
β∗
n +

√
pnS

−1/2
n u

)
> ψn

(
β∗
n

)}
= P

{
inf

u:‖u‖=C

√
pnW

T
n u+

pn
2
uT {τIpn + J1n + J2n}u > 0

}
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≥ P

{
−√

pn|Op(
√
pn)|C + pn

(
τ

2
− |op(1)|

)
C2 > 0

}
= P

{
|Op(1)| <

(
τ

2
− |op(1)|

)
· C

}
≥ P

{
|Op(1)| <

(
τ

2
− |op(1)|

)
· C, |op(1)| <

τ

4

}
≥ P

{
|Op(1)| <

τ

4
· C, |op(1)| <

τ

4

}
≥ P

{
|Op(1)| <

τ

4
· C

}
− P

{
|op(1)| ≥

τ

4

}
.

The above probability is greater than 1 − δ by choosing a
sufficiently large C.

Proof of Theorem 3.1(ii): Asymptotic normality. Using
mean value theorem of vector-valued function, we have

ψ̇n(β̂n)− ψ̇n

(
β∗
n

)
=

[∫ 1

0

ψ̈n

(
β∗
n + t

(
β̂n − β∗

n

))
dt

](
β̂n − β∗

n

)
.

Pre-multiplying (S
−1/2
n )T on both sides, the right hand side

becomes

Dn +Wn = (τIpn + Cn) · S1/2
n

(
β̂n − β∗

n

)
,

where

Dn =
(
S−1/2
n

)T
ψ̇n(β̂n),

Cn =

∫ 1

0

[(
S−1/2
n

)T
ψ̈n

(
β∗
n + t

(
β̂n − β∗

n

))
S−1/2
n − τIpn

]
dt.

Pre-multiplying m× pn-dimensional matrix An, we obtain

AnDn +AnWn

= An(τIpn + Cn) · S1/2
n

(
β̂n − β∗

n

)
= τAnS

1/2
n

(
β̂n − β∗

n

)
+AnCnS

1/2
n

(
β̂n − β∗

n

)
.

Noted that

‖An‖ ≤ ‖An‖F =
√
tr

(
AnAT

n

)
→

√
tr(G),

which implies that ‖An‖ = O(1). Since β̂n is a local mini-
mum, hence,

P
{
‖Dn‖ ≤ ε

}
≥ P{Dn = 0} = P

{
ψ̇n(β̂n) = 0

}
→ 1,

which implies that ‖Bn‖ = op(1). Let γn = β̂n − β∗
n in

A.2(iii) and A.2(iv), the consistency ‖S1/2
n γn‖ = Op(

√
pn)

with αn =
√
pn and condition (A3) implies ‖Cn‖ =

op(1/
√
pn). Consequently,

‖AnDn‖ ≤ ‖An‖‖Dn‖ = O(1)op(1) = op(1),∥∥AnCnS
1/2
n

(
β̂n − β∗

n

)∥∥ ≤ ‖An‖‖Cn‖
∥∥S1/2

n

(
β̂n − β∗

n

)∥∥
= O(1)op(1/

√
pn)Op(

√
pn) = op(1).

Thus,

AnS
1/2
n

(
β̂n − β∗

n

)
= τ−1AnWn + op(1).

The asymptotic normality follows from A.2(ii).

Proof of Theorem 3.2(i). The proof involves two steps. We
first prove

τ̂ = argmin
t

∥∥(
S−1/2
n

)T [
ψ̈n(β̂n)

]
S−1/2
n − t · Ipn

∥∥2

F
.

Noted that only the diagonal of (S
−1/2
n )T [ψ̈n(β̂n)]S

−1/2
n − t ·

Ipn depends on t, we have∥∥(
S−1/2
n

)T [
ψ̈n(β̂n)

]
S−1/2
n − t · Ipn

∥∥2

F

=

pn∑
i=1

{(
n∑

k=1

ρ′′(ek)|z(i)k |2
)

− t

}2

+ Cn,

by direct calculation. where Cn is independent of t. τ̂ can
be solved by equating the derivative to zero:

τ̂ =
1

pn

pn∑
i=1

n∑
k=1

ρ′′(ek) · |z(i)k |2 =
1

pn

n∑
k=1

ρ′′(ek) · ‖zk‖2

=
1

pn

n∑
k=1

ρ′′(ek) · xT
k S

−1
n xk.

Then, using the equivalence of norm A.2(iii), A.2(iv) and
the result above, we obtain

|τ̂ − τ | = ‖τ̂ Ipn − τIpn‖ ≤ ‖τ̂ Ipn − τIpn‖F
≤

∥∥(
S−1/2
n

)T [
ψ̈n(β̂n)

]
S−1/2
n − τ̂ Ipn

∥∥
F

+
∥∥(

S−1/2
n

)T [
ψ̈n(β̂n)

]
S−1/2
n − τIpn

∥∥
F

≤ 2
∥∥(

S−1/2
n

)T [
ψ̈n(β̂n)

]
S−1/2
n − τIpn

∥∥
F

≤ 2
√
pn

∥∥(
S−1/2
n

)T [
ψ̈n(β̂n)

]
S−1/2
n − τIpn

∥∥
= 2

√
pnop

(
1

√
pn

)
= op(1),

and the consistency is proved.

Proof of Theorem 3.2(ii). The following fact is needed to
prove 3.2(ii).

If conditions (B1)–(B5) hold, then

sup
t∈[0,1]

∥∥∥∥∥
n∑

k=1

|ρ′′(ek)|2zkzTk − σ2Ipn

∥∥∥∥∥ = op

(
1

√
pn

)
,

where zk = (S
−1/2
n )Txk is defined by A.1.

The proof can be obtained by the same argument as the
proof of A.2(ii) and 3.1(ii).
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Proof of Corollary 4.1. Since ρ(t) = (1 − e−t)2, by direct
calculation,

ρ′(t) = 2
(
e−t − e−2t

)
,

E
[
ρ′(ε)

]
= 2

[
M(−1)−M(−2)

]
= 0,

E
[
ρ′(ε)

]2
= 4

[
M(−4)− 2M(−3) +M(−2)

]
= σ2,

ρ′′(t) = 4e−2t − 2e−t,

E
[
ρ′′(ε)

]
= 4

[
M(−2)− 2M(−1)

]
= 2M(−1) = τ,

E
[
ρ′′(ε)

]2
= 4M(−2)− 16M(−3) + 16M(−4) < +∞.

Condition (B1)–(B3) are satisfied. As t → 0+,

E
{

sup
s:|s|≤t

∣∣ρ′′(ε+ s)− ρ′′(ε)
∣∣2}

= E
{

sup
s:|s|≤t

∣∣(4e−2(ε+s) − 2e−(ε+s)
)
−

(
4e−2ε − 2e−ε

)∣∣2}
= E

{
sup

s:|s|≤t

∣∣4e−2ε
(
e−2s − 1

)
+ 2e−ε

(
1− e−s

)∣∣2}
≤ E

{
4e−2ε

(
e2t − 1

)
+ 2e−ε

(
et − 1

)}2

≤ E
{
4e−2ε(3t) + 2e−ε(2t)

}2

=
{
E

(
12e−2ε + 4e−ε

)2}
t2.

Condition (A4) is satisfied.

E
{

sup
s:|s|≤t

∣∣|ρ′(ε+ s)|2 − |ρ′(ε)|2
∣∣2}

= E
{

sup
s:|s|≤t

4|e−2ε
(
e−2s − 1

)
+ e−4ε

(
e−4s − 1

)
+ 2e−3ε

(
1− e−3s

)
|2

}
≤ E

{
4
∣∣e−2ε(3t) + e−4ε(4t) + 2e−3ε(4t)

∣∣2}
=

{
E

(
6e−2ε + 8e−4ε + 16e−3ε

)2}
t2,

which implies condition (A5) is satisfied when M(−8) <
+∞, and the corollary follows.

Proof of Corollary 4.2. Since ρ(t) = et + e−t − 2, by direct
calculation,

ρ′(t) = et − e−t,

E
[
ρ′(ε)

]
= M(1)−M(−1) = 0,

E
[
ρ′(ε)

]2
=

[
M(2) +M(−2)− 2

]
= σ2,

ρ′′(t) = et + e−t,

E
[
ρ′′(ε)

]
= M(1) +M(−1) = 2M(1) = τ,

E
[
ρ′′(ε)

]2
=

[
M(2) +M(−2) + 2

]
< +∞,

hence, conditions (B1-B3) are satisfied. As t → 0+,

E
{

sup
s:|s|≤t

∣∣ρ′′(ε+ s)− ρ′′(ε)
∣∣2}

= E
{

sup
s:|s|≤t

∣∣(e(ε+s) + e−(ε+s)
)
−

(
eε + e−ε

)∣∣2}
≤

{
E

(
2eε + 2e−ε

)2}
t2.

Condition (A4) is satisfied.

E
{

sup
s:|s|≤t

∣∣|ρ′(ε+ s)|2 − |ρ′(ε)|2
∣∣2}

= E
{

sup
s:|s|≤t

∣∣(e2(ε+s) + e−2(ε+s)−2
)
−

(
e2ε + e−2ε − 2

)∣∣2}
≤

{
E

(
3e2ε + 3e−2ε

)2}
t2,

which implies condition (A5) when M(±4) < +∞, and the
corollary follows.

Proof of Theorem 5.1(i): Consistency of estimation.
According to condition (A4), the theorem is equivalent to∥∥S1/2

n

(
β̂n − β∗

n

)∥∥ = Op(
√
pn).

Then, we prove for any given δ > 0, there exists C > 0 such
that

P

{
inf

u:‖u‖=C
Qn

(
β∗
n +

√
pnS

−1/2
n u

)
> Qn

(
β∗
n

)}
≥ 1− δ,

holds for sufficiently large n. That is, there exists a local

minimum β̂n inside the ball {β∗
n +

√
pnS

−1/2
n u : ‖u‖ ≤ C}

with probability tends to 1. Denote

Dn(γn) = Qn

(
β∗
n + γn

)
−Qn

(
β∗
n

)
.

Take γn =
√
pnS

−1/2
n u, ‖u‖ = C, then follow the proof of

3.1(i), we have

Dn(γn) =
1

n

{
ψn

(
β∗
n +

√
pnS

−1/2
n u

)
− ψn

(
β∗
n

)}
+

pn∑
j=1

{
pλn

(
|β∗(j)

n + γ(j)
n |

)
− pλn

(
|β∗(j)

n |
)}

≥ pn
n

{
−

∣∣Op(1)
∣∣C +

(
τ

2
− |op(1)|

)
C2

}
+

qn∑
j=1

{
pλn

(
|β∗(j)

n + γ(j)
n |

)
− pλn

(
|β∗(j)

n |
)}

= J3n + J4n.

Condition (A2) and (A4) indicates

‖γn‖2 = pnu
TS−1

n u ≤ pn
Ωmin(Sn)

C2 <
pn
nr

C2 → 0.

Hence, using the Taylor expansion, we have

J4n =

qn∑
j=1

{
pλn

(
|β∗(j)

n + γ(j)
n |

)
− pλn

(
|β∗(j)

n |
)}
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=

qn∑
j=1

{
p′λn

(
|β∗(j)

n |
)
sgn

(
β∗(j)
n

)
γ(j)
n

+ p′′λn

(
|β∗(j)

n |
)(
γ(j)
n

)2[
1 + o(1)

]
/2

}
≥ −an · √qn‖γn‖ − bn · ‖γn‖2

≥ −an ·
√

(pnqn)/(nr) · C − bn · pn/(nr) · C2.

Therefore,

Dn(γn) ≥ J3n + J4n

≥ −pn
n

(
|Op(1)|+ an ·

√
nrn/r

)
C

+
pn
n

(
τ

2
− |op(1)| −

bn
r

)
C2.

Using regularity conditions (C1), (C2) and the same argu-
ment as the proof of 3.1(i), the existence and consistency of
the estimator follows.

Proof of Theorem 5.1(ii): Consistency of model selection.
We prove that if ‖βn − β∗

n‖ = Op(
√

pn/n), then for any
constant C,

P

{
0 = arg min

βn2:‖βn−β∗
n‖≤C

√
pn/n

Qn

(
βn1

βn2

)}
→ 1.

Denote

∂

∂β
Qn(β) =

1

n
ψ̇n(β) + bn(β),

where

b(j)
n (β) = p′λn

(
|β(j)|

)
sgn

(
β(j)

)
.

By the mean value theorem of vector-valued function, we
have

ψ̇n(βn) = ψ̇n

(
β∗
n

)
+

[∫ 1

0

ψ̈n

(
β∗
n + t

(
β − β∗

n

))
dt

](
β − β∗

n

)
.

Since ‖βn − β∗
n‖ = Op(

√
pn/n), follow the proof of Theo-

rem 3.1, we have

ψ̇n(βn) =
(
S1/2
n

)T{
Wn + (τIpn + Cn) · S1/2

n

(
βn − β∗

n

)}
,

where

Wn =
(
S−1/2
n

)T
ψ̇n

(
β∗
n

)
,

Cn =

∫ 1

0

[(
S−1/2
n

)T
ψ̈n

(
β∗
n + t

(
βn − β∗

n

))
S−1/2
n − τIpn

]
dt.

Take γn = βn − β∗
n, αn = 1 in A.2(iii) and A.2(iv), we have

‖Cn‖ = op(1). Therefore,∥∥∥∥ 1

n
ψ̇n(βn)

∥∥∥∥

≤ 1

n

∥∥(
S1/2
n

)T∥∥{
‖Wn‖+

(
‖τIpn‖+‖Cn‖

)∥∥S1/2
n

∥∥∥∥βn−β∗
n

∥∥}
= n−1O(

√
n)

{
Op(

√
pn) +

(
τ + op(1)

)
O(

√
n)Op(

√
pn/n)

}
= Op(

√
pn/n).

Then under regularity condition (C4)

∂

∂β
Qn(βn) = Op(

√
pn/n) + bn(βn)

= λn

{
op(1) + λ−1

n bn(βn)
}
,

whose j-th element is

∂

∂β(j)
Qn(βn) = λn

{
op(1) +

p′λn
(|β(j)

n |)
λn

sgn
(
β(j)
n

)}
.

β
(j)
n

p→ 0 if j > qn, hence condition (C3) indicates that the

sign of left hand side is determined by sgn(β
(j)
n ). Therefore,

with βn1 fixed, Qn(βn) achieves its minimum at βn2 = 0
with probability tends to 1, and the consistency of model
selection follows.

Before we prove Theorem 5.1(iii), we first state some no-
tations and lemmas. Let β1 ∈ R

qn ,

ψ̇n1(β1) = −
n∑

k=1

ρ′
(
εk − x̄T

k

(
β1 − β∗

n1

))
x̄k,

ψ̈n1(β1) =

n∑
k=1

ρ′′
(
εk − x̄T

k

(
β1 − β∗

n1

))
x̄kx̄

T
k ,

and

Qn1(β1) = Qn

(
β1

0

)
.

Its partial derivatives equal to

∂

∂β1
Qn1(β1) =

1

n
ψ̇n1(β1) + bn1(β1),

where b
(j)
n1 (β1) = p′λn

(|β(j)
1 |) sgn(β(j)

1 ). Since we have al-
ready proved the existence and consistency of the estima-
tor and the consistency of model selection, we may asuume
β̂n2 = 0, ‖β̂n1‖ ≤ ‖β̂n‖ = Op(

√
pn/n). Since β̂n is a local

minimum, hence, β̂n1 satisfies

(4) 0 =
∂

∂β1
Qn1(β̂n1) =

1

n
ψ̇n1(β̂n1) + bn1(β̂n1).

Consider the first term at the right hand side. Using mean
value theorem of vector-valued functions, we have:

ψ̇n1(β̂n1)

= ψ̇n1

(
β∗
n1

)
+

[∫ 1

0

ψ̈n1

(
β∗
n1 + t

(
β̂n1 − β∗

n1

))
dt

](
β̂n1 − β∗

n1

)
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=
(
S
1/2
n1

)T{
Wn1 + (τIqn + Cn1) · S1/2

n1

(
β̂n1 − β∗

n1

)}
,

where

Wn1 =
(
S
−1/2
n1

)T
ψ̇n1

(
β∗
n1

)
,

Cn1=

∫ 1

0

[(
S
−1/2
n1

)T
ψ̈n1

(
β∗
n1+t

(
β̂n1−β∗

n1

))
S
−1/2
n1 −τIqn

]
dt.

Lemma A.3. Under conditions (A1), (A4), (B1) and (B2),
for a m × qn-dimensional matrix An, if AnA

T
n converges

to m × m-dimensional positive-definite matrix G, that is

AnA
T
n → G > 0, then AnWn1

D→ N (0, σ2G).

Lemma A.4. Under conditions (A3), (A4), (B1) and (B3),
we have ‖Cn1‖ = op(

1√
pn

).

Proof of Lemma A.3 and A.4. Since qn < pn have already
been proved in the proof of A.2, we only need to show that

dn1 = O(dn), where dn1 = max
1≤k≤n

x̄T
k S

−1
n1 x̄k.

Noted that Sn1 is a qn× qn-dimensional submatrix of Sn on
the left upper corner, thus

x̄T
k S

−1
n1 x̄k ≤ ‖x̄k‖2

Ωmin(Sn1)
≤ ‖xk‖2

Ωmin(Sn1)
,

Ωmin(Sn1) = inf
u 
=0

uTSn1u

‖u‖2 = inf
u 
=0

(uT , 0)Sn(u
T , 0)T

‖(uT , 0)‖2

≥ inf
v 
=0

vTSnv

‖v‖2 = Ωmin(Sn) > nr,

therefore, dn1 < d∗n/r, where d∗n = max1≤k≤n
‖xk‖2

n . Since
‖xk‖2

nR ≤ xT
k S

−1
n xk ≤ ‖xk‖2

nr , dn and d∗n are of same order, that
is, dn ∼ d∗n. If max1≤k≤n ‖xk‖2 = o(n/p4n), then conditions
(A4) and (A5) implies (A0-A3). It follows from condition
(A4) that d∗n ∼ dn, hence, dn1 = O(dn) and the lemma is
proved.

Proof of Theorem 5.1(iii): Asymptotic normality. Using
(A.4), (4) becomes

−τ−1Wn1=S
1/2
n1

(
β̂n1−β∗

n1

)
+op(1)+nτ−1

(
S
−1/2
n1

)T
bn1(β̂n1).

(5)

Now we consider the term bn1(β̂n1). Denote

gn(t) = p′λn
(|t|) sgn(t),

g′n(t) = p′′λn
(|t|), ∀t �= 0.

From condition (C6), if |s|, |t| > Cλn, then

gn(s)− gn(t) = g′n
(
s∗

)
(s− t), s∗ ∈ [s, t]

= g′n(t)(s− t) +
(
g′n

(
s∗

)
− g′n(t)

)
(s− t)

= g′n(t)(s− t) +Rn(s, t),

where the residual |Rn(s, t)| ≤ D(s − t)2. For any

nonzero parameter β
∗(j)
n , we know from condition (C5) that

|β∗(j)
n |/λn ≥ cn/λn → +∞, and from condition (C4) that

|β̂(j)
n1 − β∗(j)

n |/λn ≤
∥∥β̂n1 − β∗

n1

∥∥/λn → 0.

Hence, |β̂(j)
n1 |/λn → +∞, and

p′λn

(
|β̂(j)

n1 |
)
sgn

(
β̂
(j)
n1

)
= p′λn

(
|β∗(j)

n1 |
)
sgn

(
β
∗(j)
n1

)
+ p′′λn

(
|β∗(j)

n1 |
)(
β̂n1 − β∗

n1

)
+Rn

(
β̂n1, β

∗
n1

)
.

written in vector form, that is

(6) bn1(β̂n1) = bλn +Σλn

(
β̂n1 − β∗

n1

)
+Rn,

where

‖bλn‖ =

(
qn∑
j=1

|p′λn

(
|β∗(j)

n1 |
)
|2

)1/2

≤ |an|
√
qn,∥∥Σλn

(
β̂n1 − β∗

n1

)∥∥ ≤ ‖Σλn‖
∥∥(

β̂n1 − β∗
n1

)∥∥
= |bn|Op(

√
pn/n),

‖Rn‖ ≤ D

(
qn∑
j=1

|β̂(j)
n1 − β∗(j)

n |4
)1/2

≤ D
∥∥β̂n1 − β∗

n1

∥∥2
= Op

(
pn
n

)
.

In addition, from condition (A5),∥∥nτ−1
(
S
−1/2
n1

)T
Rn

∥∥
≤ nO

(
1√
n

)
Op

(
pn
n

)
= Op

(√
p2n
n

)
= op(1).

Combine with (5)

(7) − τ−1Wn1 = ΣnS
1/2
n1

(
β̂n1 − β∗

n1 + δ∗n
)
+ op(1).

If condition (C7) and (C8) also holds, then∥∥nτ−1
(
S
−1/2
n1

)T
bn1(β̂n1)

∥∥
≤ |an|

√
nqn + |bn|Op(

√
pn) + op(1) = op(1).

Combine with (5), we have

(8) − τ−1Wn1 = S
1/2
n1

(
β̂n1 − β∗

n1

)
+ op(1).

Together with (7), (8) and lemma A.3, the asymptotic nor-
mality and efficiency are proved.

Before we prove Theorem 5.2, we first point out the fol-
lowing facts.
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Lemma A.5. Under condition (A3–A5), (B1–B4) and
(C1–C6), we have

(i) ‖Σλn‖ = o(1), ‖Σλn − Σ̂λn‖ = Op(
√

pn

n );

(ii) ‖bλn‖ = O(
√

pn

n ), ‖bλn − b̂λn‖ = op(
√

pn

n );

(iii) ‖Σn‖ = O(1), ‖Σ−1
n ‖ = O(1), ‖Σ̂n‖ = Op(1), ‖Σ̂−1

n ‖ =
Op(1).

Proof of Lemma A.5. First we consider (i). Note that Σλn

is a diagonal matrix, from condition (C2), we have ‖Σλn‖ =

bn = o(1). Similarly, (Σλn − Σ̂λn) is also a diagonal matrix,
from condition (C6), we have

‖Σλn − Σ̂λn‖ ≤ D
∥∥β̂n1 − β∗

n1

∥∥ = Op

(√
pn
n

)
.

Then we consider (ii). From condition (C1):

‖bλn‖ ≤ √
qnan = O

(√
pn
n

)
,

and we know from (6) that

‖bλn − b̂λn‖ ≤
∥∥Σλn

(
β̂n1 − β∗

n1

)∥∥ + ‖Rn‖

≤ o(1)Op

(√
pn
n

)
+O

(
pn
n

)
= op

(√
pn
n

)
.

Finally we consider (iii). The property of matrix norm indi-
cates

‖Σn‖ ≤ ‖Iqn‖+ nτ−1
∥∥(

S
−1/2
n1

)T∥∥‖Σλn‖
∥∥(

S
−1/2
n1

)∥∥
= 1 + o(1) = O(1),∥∥Σ−1

n

∥∥ ≤ 1

1− nτ−1‖(S−1/2
n1 )T ‖‖Σλn‖‖(S

−1/2
n1 )‖

=
1

1− o(1)
= O(1),

and the conclusion of (i) indicates

‖Σ̂λn‖ ≤ ‖Σλn‖+ ‖Σλn − Σ̂λn‖ = op(1).

Similarly, we may prove ‖Σ̂n‖ = Op(1), ‖Σ̂−1
n ‖ = Op(1).

Return to the proof of Theorem 5.2.

Proof of Theorem 5.2. We first prove the consistency of the
covariance matrix estimation. Using A.5, we have from di-
rect calculation that:

‖Covn − Ĉovn‖

=
∥∥τ−2σ2

(
S
−1/2
n1

)T (
Σ−2

n − Σ̂−2
n

)(
S
−1/2
n1

)∥∥
≤ O

(
1

n

)∥∥Σ−2
n − Σ̂−2

n

∥∥

= O

(
1

n

)∥∥Σ−2
n (Σ̂n − Σn)(Σ̂n +Σn)Σ̂

−2
n

∥∥
≤ O

(
1

n

)∥∥Σ−1
n

∥∥2(‖Σ̂n − Σn‖
)(
‖Σ̂n‖+ ‖Σn‖

)∥∥Σ̂−1
n

∥∥2

= Op

(
1

n

)
‖Σ̂n − Σn‖

= Op

(
1

n

)∥∥nτ−1
(
S
−1/2
n1

)T
(Σ̂λn − Σλn)

(
S
−1/2
n1

)∥∥
≤ Op

(
1

n

)
Op

(√
pn
n

)
= op

(
1

n

)
.

Then we prove the consistency of bias estimation. Similarly,
we have from direct calculation that∥∥δ∗n − δ̂∗n

∥∥
=

∥∥nτ−1
(
S
−1/2
n1

){
Σ−1

n

(
S
−1/2
n1

)T
bλn − Σ̂−1

n

(
S
−1/2
n1

)T
b̂λn

}∥∥
≤ O(

√
n)

∥∥Σ−1
n

(
S
−1/2
n1

)T
bλn − Σ̂−1

n

(
S
−1/2
n1

)T
b̂λn

∥∥
= O(

√
n)‖

(
Σ−1

n − Σ̂−1
n

)(
S
−1/2
n1

)T
bλn

+ Σ̂−1
n

(
S
−1/2
n1

)T
(bλn − b̂λn)‖

≤ O(
√
n)

{∥∥Σ−1
n − Σ̂−1

n

∥∥O(
1√
n

)
Op

(√
pn
n

)
+O

(
1√
n

)
op

(√
pn
n

)}
= Op

(√
pn
n

){∥∥Σ−1
n − Σ̂−1

n

∥∥ + op(1)
}

= Op

(√
pn
n

){∥∥Σ−1
n (Σ̂n − Σn)Σ̂

−1
n

∥∥ + op(1)
}

≤ Op

(√
pn
n

){
Op

(√
pn
n

)
+ op(1)

}
= op

(√
pn
n

)
,

and the theorem is proved.

APPENDIX B

This section provides the oracle inequalities for our pro-
posed estimators. We need the following regularity condi-
tions:

(D1) ρ(·) ∈ C2(R) is second order continuously differen-
tiable with ρ′′(·) ≥ ρ0 for some ρ0 > 0.

(D2) There exists two positive constant c1, c2 such that c1 ≤
p′
λn

(t)

λn
≤ c2 holds for all t > 0.

(D3) pλn(0) = 0 and p′′λn
(·) ≥ 0.

(D4) ρ′(ε) is sub-Gaussian with parameter μ.
(D5) max1≤i≤pn

1√
n
‖Xi‖2 ≤ C for some constant C > 0.

The main theorem of oracle inequalities are as follows.

Theorem B.1. Let e = (ρ′(ε1), . . . , ρ
′(εn))

T . Then, under
conditions (A4), (D1)–(D3), we have
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(i) Qn(β) has a unique minimizer β̂n. If ‖Xe
n ‖∞ ≤ c1λn,

then β̂n satisfies

‖β̂n − β∗
n‖2 ≤ 4c2

rρ0

√
qnλn.

(ii) If we further assume conditions (D4)–(D5) hold, and

we take λn = 2μC{
√

log pn

n + δ} for some δ > 0, then

‖β̂n − β∗
n‖2 ≤ 4c2

rρ0

√
qnλn

holds with probability at least 1− e−2nδ2 .

Proof of Theorem B.1(i). Under conditions (D1)–(D3), Qn

is a convex function. Therefore, there Qn has a unique min-
imizer β̂n. By Taylor expansion, we have

0 ≥ Qn(β̂n)−Qn

(
β∗
n

)(9)

=
1

n

n∑
k=1

[
ρ
(
εk + xT

k

(
β∗
n − β̂n

))
− ρ(εk)

]
−

qn∑
j=1

pλn

(
|β∗

nj |
)
+

qn∑
j=1

pλn(|β̂nj |) +
pn∑

j=qn+1

pλn(|β̂nj |)

=
1

n

n∑
k=1

ρ′(εk)x
T
k

(
β∗
n − β̂n

)
+

1

2n

n∑
k=1

ρ′′(εk + tγn)
(
β∗
n − β̂n

)T
xkx

T
k

(
β∗
n − β̂n

)
−

qn∑
j=1

pλn

(
|β∗

nj |
)
+

qn∑
j=1

pλn(|β̂nj |) +
pn∑

j=qn+1

pλn(|β̂nj |).

Under conditions (A4) and (D1), we have

1

2n

n∑
k=1

ρ′′(εk + tγn)
(
β∗
n − β̂n

)T
xkx

T
k

(
β∗
n − β̂n

)
≥ ρ0r

2
‖β∗

n − β̂n‖22,

and under the assumption of Theorem B.1, we have∣∣∣∣∣ 1n
n∑

k=1

ρ′(εk)x
T
k

(
β∗
n − β̂n

)∣∣∣∣∣ ≤
∥∥∥∥Xe

n

∥∥∥∥
∞
‖β̂n − β∗

n‖1

≤ c1λn‖β̂n − β∗
n‖1.

Plugging the above inequalities into (9), together with con-
dition (D3) yields

1

2
ρ0r‖β∗

n − β̂n‖22

≤ c1λn

qn∑
j=1

|β∗
nj − β̂nj |+ c1λn

pn∑
j=qn+1

|β̂nj |

−
qn∑
j=1

pλn

(
|β∗

nj |
)
+

qn∑
j=1

pλn(|β̂nj |) +
pn∑

j=qn+1

pλn(|β̂nj |)

= c1λn

qn∑
j=1

|β∗
nj − β̂nj |+ c1λn

pn∑
j=qn+1

|β̂nj |

−
qn∑
j=1

p′λn
(θj1)

(
|β∗

nj | − |β̂nj |
)
+

pn∑
j=qn+1

p′λn
(θj2)|β̂nj |,

where θj1 is some point between |β∗
nj | and |β̂nj |, θj2 is some

point in [0, |β̂nj |]. Using condition (D2), we further have

1

2
ρ0r‖β∗

n − β̂n‖22 ≤ (c1 + c2)λn

qn∑
i=1

|β̂nj − β∗
nj |

≤ 2c2λn
√
qn‖β̂n − β∗

n‖2,

where the last inequality is obtained by Cauchy-Schwarz
inequality. Then the result of Theorem B.1(i) follows.

Proof of Theorem B.1(ii). Condition (D4) implies ρ′(εk) is
sub-Gaussian with parameter μ, therefore, 1

n

∑n
k=1 ρ

′(εk)xki

is sub-Gaussian with parameter μ(
∑n

k=1 x
2
ki)

1/2 for all i ∈
{1, . . . , pn}. By Hoeffding inequality and condition (D5), we
have

P

{∣∣∣∣∣ 1n
n∑

k=1

ρ′(εk)xki

∣∣∣∣∣ ≥ λn

}
≤ 2 exp

{
− n2t2

2μ2
∑n

k=1 x
2
ki

}
≤ 2 exp

{
− nt2

2μ2C2

}
.

It follows that

P

{
max

1≤i≤pn

∣∣∣∣∣ 1n
n∑

k=1

ρ′(εk)xki

∣∣∣∣∣ ≥ λn

}
≤ 2pn exp

{
− nt2

2μ2C2

}
.

Take λn = 2Cμ{
√

log pn

n + δ} and Theorem B.1(ii) follows.

APPENDIX C

More simulation results are shown in Table 2 and Table 3,
where the meaning of the notations in Table 2 are as follows:

– Bias: the empirical bias of the estimate.
– SE: the empirical standard error.
– SEE: the estimated standard error.
– t.SE: theoretical asymptotic standard error.

Table 3 shows the simulation result of variable selection pro-
cedure, where the meaning of the notations in Table 3 are
as follows:

– CF: the rate of correct fit.
– FPR: false positive rate.
– FNR: false negative rate.
– ME: model error.
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