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A review of nonparametric regression methods for
longitudinal data
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Longitudinal data, which involve measuring a group of
subjects repeatedly over time, frequently arise in many clin-
ical and biomedical applications. To identify the complex
patterns of change in the outcome and their association with
covariates over time, a sufficiently flexible model is always
required. Nonparametric regression, known for being data-
adaptive and less restrictive than parametric approaches,
becomes a promising tool for handling longitudinal data.
This paper reviews various nonparametric regression meth-
ods for longitudinal data, including specific traditional non-
parametric methods for the univariate case and several rep-
resentative methods for the multivariate case, among which
tree-based techniques are dominant. We summarize their
motivations and provide a brief practical performance com-
parison of these methods in simulations, as well as discuss
potential future research directions.
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1. INTRODUCTION

Generally, a typical longitudinal data framework involves
repeated measurements on N subjects, with the number of
measurements varying for each subject and denoted by ni for
the ith subject. Each observation consists of measurements
on time t, response variable y, and predictors x. For simplic-
ity, let ti = (ti1, . . . , tini)

T
, i = 1, ..., N , where tij is the jth

measurement time of the ith subject and analogously de-
fine yi,xi. Repeated measurements for each individual can
provide crucial information about changes in outcome and
covariates over time. This enables a more comprehensive un-
derstanding of the pattern of change over time and allows
for better decision-making in various fields, such as medical
treatment, economic modeling, weather forecasting, disaster
warning, and more.

Analyzing longitudinal data presents significant chal-
lenges due to several unique features inherent in this type of
data. One of the most troublesome features is that repeated
measurements within each subject are typically related, and
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the average level of responses may vary between individuals.
Ignoring these correlations and individual differences can re-
sult in significant estimation errors. In addition, the obser-
vation times for longitudinal data can be ordered in either
equal or irregular spaces, which may limit the approaches
that can be used for analysis. This may be caused by the
data collection mechanism and missing values in repeated
measurements. For a more in-depth discussion of the fea-
tures of longitudinal data, refer to Liu [33].

To address these issues, statisticians have developed sev-
eral parametric models, such as the linear mixed-effects
model (LMM) introduced by Laird and Ware [26] and the
marginal model for the generalized estimating equations
(GEE) by Liang and Zeger [29]. Other acknowledged mod-
els include the generalized linear mixed model (GLMM) and
the varying coefficient model (VCM). However, parametric
models can suffer from misspecification when the data are
highly nonlinear. Nonparametric regression, which is data-
adaptive and less restrictive, has become a promising tool.
Common non-parametric methods include kernel regression,
spline methods, and local polynomial regression, among oth-
ers. For more traditional methods for longitudinal data anal-
ysis, see Fitzmaurice et al. [13].

In recent years, machine learning methods, such as re-
gression trees (Breiman [3]), boosting (Friedman [16]), neu-
ral networks have gained popularity due to their ability to
identify complex relationships without making strong as-
sumptions about the data distribution, especially in high-
dimensional cases. Nevertheless, these methods often as-
sume that observations are independently and identically
distributed (iid), which is not the case for longitudinal data.
In the past, it has been common practice to use repeated
measures of the outcome variable as a vector response to
generate multivariate trees. However, this approach typi-
cally requires data with a specific structure, such as bal-
anced data, as demonstrated in Segal [45]. To resolve this
dilemma, several machine learning methods have been com-
bined with traditional longitudinal data models, such as the
marginal model, linear mixed-effects model, and varying co-
efficient model. Examples of such studies include Pande et
al. [37], Sela et al. [46], and Deshpande et al. [8].

In this article, we review several important nonparamet-
ric methods for analyzing longitudinal data and show how
machine learning methods, specifically regression trees, can
be applied to this type of data. In addition, we investi-
gate which approach is recommended by simulations and
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briefly discuss potential future research directions. As the
structure of predictor variables may differ depending on the
research questions, we consider both univariate and multi-
variate cases in this paper. Thus, we not only review meth-
ods that model the response variable y as a function of a
scalar t, but also those that include other covariates. These
covariates can be either time-invariant vector xij ≡ xij′

(such as gender and race) or time-varying covariate vector
xi = {xi1, ...,xini} (such as salary and temperature). We
categorize different nonparametric methods according to the
data structures in the following sections.

Our review is organized as follows. In Section 2, we review
basic models for univariate longitudinal data and several
nonparametric approximate methods. Section 3 focuses on
existing nonparametric methods combined with regression
trees for multivariate cases. After that, we provide simula-
tion studies for various scenarios in Section 4. A concluding
discussion and future research directions are given in Section
5.

2. SINGLE-COVARIATE NONPARAMETRIC
REGRESSION

We begin by considering the traditional scenario where
the predicted variable is univariate. In such cases, nonpara-
metric regression usually only considers the potential rela-
tionship between the response variable y and the measure-
ment time t. It is worth noting that t can be substituted for
any scalar variable x. In this section, we will discuss several
representative nonparametric estimation methods.

2.1 Basic models for single-covariate
nonparametric regression

Nonparametric models for longitudinal data can be
broadly categorized into two types. The first type inher-
its the principles of the LMM and employs nonparametric
techniques to estimate both fixed and random effects in the
traditional LMM model. The second type is the marginal
model, which focuses more on fixed effects and relies on
fewer assumptions for potential distributions.

A nonparametric mixed-effects (NPME) model for longi-
tudinal data is introduced in Shi et al. [48]:

(1) yij = f (tij) + vi (tij) + εij ,

where f(t) models the population means, called the fixed-
effects curve; vi(t) models individual curve variations from
f(t), called random-effects curves with expectation equal to
0 and a covariance function E [vi(s)vi(t)], εij are measure-
ment errors. It is expected that both the population and
random effects curves can be approximated using some ba-
sis functions or methods. The NPME model has the advan-
tage of incorporating both fixed and random effects, which
allows for a more flexible and accurate representation of the
underlying data structure and can better capture the het-
erogeneity in the data.

In some cases, we are more concerned with the prediction
of y for a new individual whose random effect may be differ-
ent from any individual in the sample. We would like to pay
more attention to population level than individual-specific
random effect, and a helpful remedy for it is the marginal
model.

Specifically, suppose yi marginally has the vector of
conditional mean μi = (μi1, . . . , μini)

T
and variance

var (yi | ti) = Σi. A marginal nonparametric model is usu-
ally given by

(2) μij = g(θ (tij)), var (yij | tij) = φ−1v (μij) ,

where θ(·) is an unknown smooth function and g(·) is a
known monotonic link function, v(·) is a variance function
and φ is a scale parameter.

Indeed, there are numerous well-known nonparametric
approximate methods for nonparametric regression, such as
local polynomial kernel estimates, local averaging estimates
(including the kernel, partitioning, and nearest neighbor es-
timates), least squares estimates using splines, penalized
least squares estimates, and so on. We will introduce some
of them below, and for more information, refer to Wu and
Zhang [62]. While the theoretical convergence of these meth-
ods has been established, it is beyond the scope of this pa-
per. Therefore, we will not delve into further details on this
topic.

2.2 Local polynomial kernel method

Based on (2), Lin and Carroll [30] proposed a kernel GEE
(KGEE) estimator which extends the GEE method for para-
metric regression to the nonparametric case. Kernel GEE
method approximates θ (tij) locally by a d th-order polyno-

mial as θ (tij) ≈ β0 + · · · + βd (tij − t)
d
= GT (tij − t)β,

where G(z) =
[
1, z, . . . , (z)

d
]T

, β = (β0, . . . , βd)
T
. In

what follows f (1)(t) denotes the first-order derivative of
any arbitrary function f(t) and analogously define f (2)(t).

Let Gi(t) = {G(ti1 − t), . . . ,G(tini − t)}T . The symmetric
local polynomial kernel GEE estimating equation is written
as
(3)

N∑
i=1

Gi(t)
TΔi(t)K

1/2
ih (t)V−1

i (t)K
1/2
ih (t) {yi − μi(t)} = 0,

where μi(t) = {μi1(t), . . . , μini(t)}
T

with μij(t) =
g
{
GT (tij − t)β

}
, Δi = diag

(
(g)(1)

[
GT (tij − t)β

])
,

Kih(t) = diag {Kh (tij − t)} with a symmetric zero-mean
kernel function Kh(s) = h−1K(s/h), Vi is an invertible
working matrix, which can be estimated using the method of
moments. The kernel functions can be chosen from a wide
range of options such as the Gaussian, Epanechnikov, or
triangular kernel. The bandwidth h determines the width of
the kernel function and plays an important role in nonpara-
metric regression. There are several approaches for selecting
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the bandwidth, including the least-squares cross-validation
(CV) method, empirical bias bandwidth selection (EBBS)
method in Ruppert [43], and so on.

After estimating β at time t, the estimated θ(t) is ob-

tained as θ̂(t) = β̂0. Lin and Carroll proved that the kernel
GEE estimator is most efficient when the working matrix
Vi is an identity matrix Ii of dimension ni. This contrasts
with the parametric GEE method, indicating that the tradi-
tional kernel method cannot account for within-cluster cor-
relation. Wang [54] provided an alternative kernel smoothing
method based on the kernel GEE estimator, which is called
the seemingly unrelated kernel (SUR) estimator, to better
capture the correlation information.

Denoting kernel estimator at the wth iteration by

θ̂
[w]
K (t), the updated estimator at the (w + 1)th iteration

is θ̂
[w+1]
K (t) = β̂0, while β̂ = (β̂0, . . . , β̂d)

T solves kernel-
weighted estimating equation:

0 =

N∑
i=1

ni∑
j=1

Kh (t− tij)

∗
[
(g)(1){GT (tij − t)β}

(
Ti

∗j
)T]

× (Vi)
−1

[
yi − μ∗j

{
ti,β, θ̂

[w]
K (t)

}]
,

where Ti
∗j is a ni × (d+ 1) matrix of zeros except that the

jth row is
{
1, (tij − t) , . . . , (tij − t)

d
}
, and the lth element

of μ∗j

{
ti,β, θ̂

[w]
K (t)

}
is g

{
GT (til − t)β

}
when l = j, and

is g
{
θ̂
[w]
K (til)

}
when l �= j.

When using the estimator of kernel GEE as the initial

estimate θ̂
[0]
K (t) and θ̂

[1]
K (t) as a one-step update estimator,

Wang [54] showed that the one-step update estimator, with
great computational convenience, behaves almost as well as
the fully iterated one. Additionally, the SUR estimator is
very adaptable and can be generalized to a wide range of
situations, such as handling multivariate x following Rup-
pert and Wand [44]. Furthermore, Wang et al. [55] and Lin
et al. [31] incorporated the SUR method into semiparamet-
ric marginal models to achieve semi-parametric efficient es-
timation.

2.3 Local polynomial for mixed effect model

In the previous section, it is pointed out that kernel GEE
could not fully utilize the information of the correlation ma-
trix. Different from Wang [54], Wu and Zhang [61] proposed
a method called the local polynomial linear mixed-effect
(LLME) estimator to address this issue, which combines the
local polynomial kernel method with the NPME model (1)
to incorporate within-cluster correlation.

Similarly, it is assumed that f(t) and vi(t) have (d+1) th
continuous derivatives. Thus for any fixed t, f(t) and vi(t)
at tij can be approximated by d th-order polynomials within

a neighborhood of t as:

f (tij) ≈ β0+β1 (tij − t)+ . . .+βd (tij − t)
d
= GT (tij− t)β,

and

vi (tij) ≈ bi0+bi1 (tij − t)+· · ·+bid (tij − t)
d
= GT (tij−t)bi.

Then within a neighborhood of t, the model can be reason-
ably represented as an LMM model,

yij = GT (tij − t) (β + bi) + εij ,

inferences for β and bi follow the similar spirit of LMM.
The only difference is that they take a local likelihood es-
timator with kernel weight instead of traditional maximum
likelihood estimation. It has been shown that for bounded ni

and as N → ∞, the asymptotic performance of the LLME
estimator is similar to kernel GEE and it considers within-
subject correlations more carefully.

Another way to estimate fixed effect curve and random
effect curve is using B-spline basis functions, as described in
Rice et al. [42]. See the next section for more details on the
spline methods. The trade-off is computation time, as LLME
is done locally at each point, while the B-spline approach is
a global smoothing procedure.

2.4 Spline method

Besides the local polynomial kernel method, another pop-
ular nonparametric approach is the spline method, such as
the smoothing spline (Green et al. [18]) and regression spline
(Stone et al. [51]), which are defined as combinations of some
basic functions such as B-spline basis. Lin et al. [32] showed
that the smoothing spline estimator is asymptotically equiv-
alent to the SUR kernel estimator and can be seen as a
higher-order SUR kernel estimator. To illustrate the basic
concepts of the spline methods, first rewrite the marginal
model

(4) E(yij | tij) = g(θ (tij)) = F (tij) ,

where F (t) is a smooth but unknown function. Denoted
by {B1(z), . . . , Bq(z)} a set of basis functions, one approxi-
mates F (t) by F (t) ≈

∑q
l=1 Bl(t)αl, where q is determined

by the number of knots and the order of the basic function.
The selection of the order involves a trade-off between model
complexity and prediction accuracy. Typically, the order of
the spline function is selected through CV, and it commonly
falls within the range of 2 to 4.

Given the desired order, the smoothing spline method es-
timates F (t) using all observed values as knots, and thus,
there is no need to select q. However, a value for the smooth-
ing parameter λ needs to be optimized. The least squares
estimators α̂l of αl are then obtained by minimizing a pe-
nalized sum of squares (PSS):
(5)
N∑
i=1

[yi − F (ti)]
T
V−1

i [yi − F (ti)] + λ

∫ tmax

tmin

[
F (2)(s)

]2
ds,
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where λ ≥ 0 is the smoothing parameter for smoothing
spline, F (ti) = (F (ti1), . . . , F (tini))

T
and tmin and tmax are

the times of the first and last measurements across N sub-
jects. The optimal value of λ depends on the characteris-
tics of the data and can be selected by generalized cross-
validation (GCV) and general maximum likelihood (GML).

When the sample size is large, the computational cost
of smoothing splines can increase significantly. In this case,
regression splines may be a more feasible alternative since
they typically do not include a smoothing penalty and rely
on fewer knots while selecting optimal knots is crucial. The
number and position of knot points determine the poten-
tial flexibility of the regression spline. In practice, knots are
usually placed at equally spaced intervals or at quantiles
of the data. Criteria such as AIC and GCV can be used
to select the number of knots, and a more comprehensive
investigation of knot selection has been surveyed by Wand
[53]. Zhu et al. [68] confirmed that the asymptotic bias for
regression splines is robust to working matrix misspecifica-
tion, whereas smoothing splines are not. Additionally, penal-
ized splines (P-splines) combine the properties of regression
splines and smoothing splines, reducing the computational
burden of smoothing splines and being less sensitive to knot
allocation. For more details, refer to Eilers et al. [9].

2.5 Functional principal components analysis
approach

Longitudinal data, when ni is large, is also known as func-
tional data in engineering and biological applications. Func-
tional principal component analysis (FPCA) is a commonly
used method in functional data analysis, as discussed in Rice
and Silverman [41]. In FPCA, the response variables yi(t)
are treated as realizations of a smooth L2 process with mean
μ(t) and covariance function cov(yi(s), yi(t)). The FPCA
model can be expressed as follows:

(6) yij = μ (tij) +

∞∑
l=1

ξilφl (tij) + εij ,

where E(εij) = 0, var (εij) = σ2, φl is the eigenfunctions for
orthogonal expansion of covariance function cov(yi(s), yi(t))
with the lth largest eigenvalue and ξil is principal compo-
nent scores for the ith subject and lth eigenfunction. Briefly
speaking, FPCA replaces the prespecified basis spline func-
tions in Section 2.3 with a mean function and the eigenfunc-
tions of the covariance operator of the response.

Under certain conditions, it has been proven that infinite-
dimensional processes can be well approximated by the pro-
jection on the function space spanned by the first K eigen-
functions as ŷij = μ̂(tij)+

∑K
l=1 ξ̂ilφ̂l(tij) in Boente et al. [2].

Thus FPCA can effectively reduce the number of basis func-
tions. Yao et al. [63] demonstrated that this method can be
extended to situations in longitudinal data analysis and pro-
vide methods to estimate the eigenfunctions and principal
components. To select the number K of the eigenbasis, one
can choose the leave-one-subject-out CV method or AIC.

3. MULTIPLE-COVARIATE
NONPARAMETRIC REGRESSION

In the previous sections, we presented several univari-
ate regression methods for longitudinal data. However, when
there are other covariates x ∈ Rp related to the response,
one needs to take the influence of these possibly important
covariates into account to avoid unnecessary loss of infor-
mation. In this section, we extend our review from scalar
t to the multivariate case. The traditional spline methods
are not suitable for multidimensional problems, and the
general kernel function will face the curse of dimensional-
ity when the dimension of x increases. Therefore, follow-up
research usually combines traditional models with machine
learning methods such as regression trees. Additionally, dur-
ing the repeated measurements, some covariates are mea-
sured only at baseline, referred to as time-invariant covari-
ates xij ≡ xij′ while others are measured along with the
response referred to as time-varying covariates. To avoid
notation confusion, we denote time-invariant covariates as
x∗
i ∈ Rp to distinguish from xi. Methods for analyzing mul-

tivariate longitudinal data may vary depending on the struc-
ture of the covariates.

Importantly, it should be noted that although the practi-
cal effectiveness of random forests has been extensively val-
idated in the analysis of longitudinal data, the theoretical
analysis of such composite methods seems rather difficult
and remains an open issue.

3.1 Regression trees combined with
marginal model

The marginal models approach to analyzing multivariate
longitudinal data aims to estimate the mean function, while
treating the correlations between repeated measurements of
the same individual as noise correlations. Based on such
models, regression trees are usually constructed by directly
considering the correlations within the same individual. A
typical approach involves finding the best split by minimiz-
ing the (weighted) sum of squared residuals when splitting
a node.

3.1.1 Splinetree

Segal [45] firstly proposed a kind of longitudinal regres-
sion tree in which the repeated measures for the response
variable yi = {yi1, ..., yim} are assumed to have the same
number of equally spaced measurements and are treated as
multiple responses to build multivariate trees with modified
split criteria. However, naively applying multivariate deci-
sion trees to long vector responses is not successful in some
cases and the assumption of balanced data seems too re-
strictive in real life. Yu and Lambert [64] extended this work
by reducing the dimension of the outcome vector, which is
called splinetree.

Formally, assuming the data structure is {(yij , tij ,x∗
i )},

splinetree mainly explores the relationship between the
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time-invariant covariate and the response variable. Instead
of directly taking repeated measures of each individual re-
sponse variable as a response vector to build a multivariate
tree, each individual’s response curve is firstly represented
as a linear combination of spline basis in splinetree:

(7) μij(tij ,x
∗
i ) =

∑q
l=1 βil(x

∗
i )Bl(tij),

and the coefficient vectors {βi(x
∗
i ) =

(βi1(x
∗
i ), . . . , βiq(x

∗
i ))

T }N1 are estimated by minimizing
PSS in (5) with Vi = Ii. The selection of q and λ is similar
to the smoothing spline in Section 2.4. The estimated
coefficients {βi(x

∗
i )}N1 are treated as new response variables

to build trees and the prediction error in the node L is
measured by the standardized squared error loss:

SSL =
∑
i∈L

(
βi − βL

)T
BTB

(
βi − βL

)
,

where B is the M × q basis matrix evaluated at the chosen
fixed time points {t1, . . . tM}, βL represents the mean co-
efficient vector of all individuals assigned to node L, which
is used to determine the predicted curve at this node. The
splitting rule is to divide each individual into different nodes
to minimize prediction error as much as possible.

This method combines the computational efficiency and
model-free characteristics of trees with the advantages of
smoothing splines. It assumes that different individuals
are independent, making it reasonable to fit a multivari-
ate tree with an individual-specific growth curve. However,
the splinetree method does not take into account the in-
fluence of the covariance matrix when estimating β and
growing trees, which may decrease estimation efficiency.
Additionally, Neufeld [35] used regression splines instead
of smoothing splines to reduce the computational burden.
Other works, such as Lee [27, 28], had proposed similar mul-
tivariate decision tree methods that use GEE techniques
within each node for general types of response variables.
Combining some of the methods mentioned in Section 2 with
these multivariate trees could be an interesting direction for
future research.

3.1.2 Boostmtree

In addition to the tree-based method, boosting, another
machine learning approach, has attracted attention in re-
cent years with its application in various data types. Pande
et al. [37] put forward a boosted multivariate tree (called
boostmtree) for longitudinal data which assumes a similar
data structure to splinetree.

Specifically, it is assumed that the vector of conditional
mean satisfies
(8)

μi(ti,x
∗
i ) = β0 (x

∗
i )1i +

q∑
l=1

Bl (ti)βl (x
∗
i ) = Fi(β(x

∗
i )),

where 1i = (1, . . . , 1)Tni×1, {Bl(ti)}q1 are the basic function
vectors evaluated at ti, and β(x∗

i ) = (β0(x
∗
i ), . . . , βq(x

∗
i ))

T .
For boostmtree, the common choices of basic function are
cubic B-spline and equally spaced knots. The optimal num-
ber of knots is selected on a grid of intervals.

Following the framework in Friedman [16], boostmtree

starts with an initial value β(0)(x∗), and the value at it-
eration w = 1, . . . ,W is updated from the previous value
according to

β(w)(x∗) = β(w−1)(x∗) + vh (x∗;aw) ,

μ
(w)
i = Fi

(
β(w)(x∗)

)
,

where 0 < v ≤ 1 is a learning parameter, h (x∗;aw) de-
notes an optimized base learner over a ∈ A and A is the set
of parameters of the weak learner. For a regression tree, A
refers to the splitting variables, split locations (which actu-
ally represent the information of the generated nodes), and
terminal node predictors. The goal of boosting is to update
β(x∗) at the wth iteration by minimizing:

N∑
i=1

Li

(
yi,μ

(w)
i

)
,

where Li (yi,μi) = (yi − μi)
T
V−1

i (yi − μi) ,Vi is the
working matrix estimated by an in-sample CV method in
boostmtree for each iteration. The most important dif-
ference between boostmtree and the traditional boosting
method is that it takes into account the covariance matrix
when boosting β(x∗).

To solve the minimization problem, a simple idea is to
find the optimal descent gradient for subject i with respect
to β (x∗

i ) evaluated at β(w−1) (x∗
i ) as

gw,i = − ∂Li (yi,μi)

∂β (x∗
i )

∣∣∣∣
β(x∗

i )=β(w−1)(x∗
i )

.

However, this gradient is defined only at training data
{x∗

i }
N
1 and cannot be generalized to other x∗-values. Boost-

mtree fits a multivariate regression tree to determine the
�2-closest base learner to the gradient at any x∗ with a two-
stage procedure.

In the first step, a multivariate regression tree h(x∗; a)

is fitted based on Ishwaran et al. [24], using {(gw,i,x
∗
i )}

N
1

as training data, a including {Lk,w}K1 , the total K terminal
nodes of the regression tree at the wth iteration. In the
second step, while keeping all other parameters in a fixed,
the terminal node predictors are optimized as

{aw} = argmin
a∈A

N∑
i=1

Li

(
yi, Fi

(
μ

(w−1)
i + h (x∗

i ;a)
))

,

where h(x∗;a) =
∑K

k=1 γk1(x
∗ ∈ Lk,w), γk is the termi-

nal node predictor of Lk. In addition, boostmtree can add
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a smooth penalty at the second step to enhance its general-
ization ability.

Through simulation, Pande et al. [37] showed that this
method is competitive when the underlying model contains
high-order interactions, and it is robust to covariance mis-
specification. However, an obvious flaw of splinetree and
boostmtree is that all observations of the same individual
need to be assigned to the same node to describe the growth
curve when dividing. Therefore, it can only be applied to
features that do not change over time. As there is no satis-
factory result to provide a tree-splitting rule to maintain all
observations for each subject after splitting, Pande et al. [36]
proposed a different boosting base learner with B-spline to
handle time-varying covariates for longitudinal data. In ad-
dition to marginal models, there are more boosting methods
for longitudinal data in Yue et al. [65] based on the varying-
coefficient model, and Sigrist [49, 50] based on mixed effects
models.

3.1.3 Historical tree

A natural approach to modifying a regression tree for
longitudinal data is to make full use of historical informa-
tion when splitting nodes. Sexton et al. [47] provided such
a vehicle called historical tree as an attempt to estimate
how the response depends on its prior realizations as well as
time-varying predictor variables.

More specifically, the training data is denoted as
{yij , tij ,xij}, with time-invariant predictors classified into
the concurrent group and time-varying predictors in both
the concurrent and historical groups. In a historical regres-
sion tree, splitting on a concurrent predictor follows the
CART criterion used in Breiman [3]. For historical predic-
tors, a summary function is used to capture historical in-
formation before the splitting. One example of a summary
function is

s (f, {zij}, k) =
∑

til∈[tij−f1,tij)

I (zilk < f2) , l = 1, . . . , j,

where {zij} = {zil = (yil,xil) : til < tij} ∈ Rp+1 denotes
historical values of subject i prior to time tij , and zilk is its
kth component, f = (f1, f2) is the argument vector of the
summary function. Given a node L, the splitting based on
a historical predictor is done by solving

argmin
(k,μL,μR,c,f)

∑
(ij)∈L

{((yij − μLI (s (f, {zij}, k) ≤ c)−

μRI (s (f, {zij}, k) > c)}2.

Each node of the historical tree searches for the best split
among all splits of concurrent and historical predictors.

One explanation for historical tree is that samples with
close measurement times may have a higher correlation, and
incorporating their values can improve the performance of
the trees. However, determining the optimal cut-off point for

time-varying predictors can be computationally expensive as
there are additional parameters to be optimized. Addition-
ally, there is a lack of historical information when predict-
ing for a new individual, which can affect prediction per-
formance. Besides, due to the limitations of the summary
function, historical information may not be fully utilized.
More comprehensive methods are needed to fully leverage
the rich information in longitudinal data.

3.2 Regression trees combined with LMM

The characteristic of the LMM model is that y is mod-
eled by fixed and random effects, and the correlation within
the individual is explained by the random effect. Thus, one
classic idea is to use regression trees to estimate the fixed
effect in the LMM model: once we know the random effect,
the fixed effect can be estimated by regression trees as iid
data. Besides, Rabinowicz et al. [40] recently gave a new
way to account for the correlation directly when growing
LMM-based trees.

3.2.1 Mixed effects regression tree

Rather than methods based on marginal models like
splinetree and boostmtree, a popular trend in recent years
is to combine LMM with regression trees which allow obser-
vations within clusters to be split and handle time-varying
covariates as:

(9) yij = f (xij) + ZT
ijbi + εij ,

where f(xij) refers to the fixed effect in the LMM esti-
mated by regression tree, Zij ∈ Rr is the random effects
covariate, bi ∼ Nr(0,D) is the random effects vector, and
εi = {εi1, ..., εini}T ∼ N(0, σ2Ini) is the noise. The essential
idea is to remove the random effect from y properly, and
the remaining fixed effects with noise are irrelevant, then
are used as new responses to train the regression trees as
iid data. Since neither the random effects nor the fixed ef-
fects are known in advance, the estimation is alternatively
updated, which is similar to the EM algorithm:

• Step 0: Initialize b̂i = 0, D̂ = Ir, σ̂ = 1;
• Step 1: Denote ỹij = yij −ZT

ijb̂i, train a regression tree
with samples {ỹij , xij}, denote the tree predictions as

f̂(x) for any point x;

• Step 2: Given f̂(xij) predicted by Step 1, fit the linear

model yi = f̂ (xi)+ZT
i bi+εi, update b̂i, D̂, and σ̂ with

the corresponding maximum likelihood estimation;
• Step 3: Repeat Step 1 and Step 2 until convergence,

which is monitored by computing the generalized log-
likelihood (GLL) criterion at each iteration:

GLL(f(·),bi | y) =
∑N

i=1{eTi ei
+bT

i D
−1bi + log |D|},

where ei = yi − f (xi)− ZT
i bi.
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Such a method is called the Mixed effects regression tree
(MERT) in Hajjem et al. [19]. When the random effects part
can be effectively estimated, such algorithms perform well.
Similar work has also been done in the Random effects/EM
(REEM) tree introduced by Sela et al. [46] and the difference
is that the REEM tree replaces the tree prediction at each
terminal node Lk with local fixed effects μk by fitting the
linear mixed effects model:

(10) yij = ZT
ijbi +

K∑
k=1

I (xij ∈ Lk)μk + εij ,

where K is the total number of terminal nodes in the tree.
Capitaine et al. [6] extended the REEM tree to the forest
and showed that both MERT and REEM tree and forest are
applicable to the high-dimensional cases. Compared with
the marginal model, this type of method can better predict
future observations for those already included in the sample
because their random effect has been estimated.

3.2.2 Generalized linear mixed-effects model tree

Instead of using piecewise constants to estimate the fixed
effects in the REEM tree, Fokkema et al. [14] studied a
generalized linear mixed-effects model tree (GLMM tree)
which allows differences not only in intercepts across termi-
nal nodes but also in slopes associated with x. Firstly select
some of the features of x ∈ Rp as the regression variable srg,
and some as the splitting variable ssp. The overlap between
the two sets of variables is allowed. The GLMM predictor
can be presented as:

(11) g(yij) =

K∑
k=1

I
(
sspij ∈ Lk

)
βT
k s

rg
ij + ZT

ijbi + εij .

Compared with the REEM tree, this approach has made
a trade-off between the traditional random forest piecewise
constant prediction and the LMM model and retains some
interpretability.

The process of estimating parameters with the GLMM
tree is similar to that of the REEM tree, both of which
alternate between updating random effects and fixed effects.
However, when growing trees to estimate the fixed effect, the
GLMM tree replaces the CART criterion with model-based
recursive partitioning (MOB) in Zeileis et al. [66] as splitting
rules, which cycles iteratively through several steps:

• (1) With the current random effect estimator known,
fit a GLMM to the dataset within the parent node to
estimate β,

• (2) make a test for parameter instability with respect
to each of a set of partitioning variables and choose the
variable associated with the highest instability,

• (3) find the best cut-point by minimizing the sum of
the loss functions in child nodes,

• (4) repeat the procedure in each of the resulting sub-
groups until a stopping criterion is reached.

This tree-based method relies more on the specification of
predictor variables than REEM, which may increase the
danger of model misspecification. Nevertheless, it improves
the prediction accuracy when the fixed-effects predictor vari-
ables are correctly specified or when the sample size is suffi-
cient. A work similar to the GLMM tree is Bürgin et al. [4],
where they used the maximum likelihood equation as the
criterion for tree partitioning.

3.2.3 Tree-based LMM

Both the REEM tree and GLMM tree use a two-step
estimation process, where regression trees are trained with
iid data by removing the random effect for the response.
However, Rabinowicz et al. [40] had developed a new regres-
sion tree for correlated data, called RETCO, which explicitly
takes the correlation structure into account in the splitting
criterion. It is well known that the CV with squared error
loss is biased in cases involving non-iid data. To address this,
Rabinowicz et al. [39] introduced a bias-corrected CV esti-
mator that adds a correction term to the L2 loss function.
Rabinowicz et al. [40] applied this idea to the best splitting
measurements for regression trees.

In particular, given the current nodes set LK∗
= {Lk}K

∗

1 ,
RETCO finds the best node (k̃), the best covariate

(
lk̃
)
and

the best threshold
(
ck̃
)
for splitting as follows:

k̃, lk̃, ck̃ = argmin
k∈LK∗ ,l∈Jk,c∈R

{‖y − ŷ‖22

+ 2 tr (H (Var(y)− Cov (y∗,y)))},

where y = {y1, . . . ,yN}T , y∗ is the new observations mea-
sured at the same covariate values as y, Cov (y∗,y) is spec-
ified according to the research questions, Jk is the set of
available covariates for splitting, and ŷ = Hy is the gen-
eralized least squares estimator of (10) given the nodes
LK∗

/Lk, {Lk ∩ xl ≤ c} and {Lk ∩ xl > c}. It is noticed
that the optimal split is searched through all terminal nodes
at each step rather than splitting each node independently.
The reason is that splitting one node may affect the split-
ting of others due to the correlation between observations
from different nodes. Meanwhile, RETCO introduces a new
stopping criterion whereby the loss function after splitting
should not be higher than before splitting, with the aim of
reducing computational burden.

RETCO directly takes the correlation structure into ac-
count in the splitting rules, estimating process, and stop-
ping criterion to improve its prediction performance. Its
loss function can become a new tool to develop more tree-
based methods for correlated data. However, RETCO iter-
ates through all nodes at each split, resulting in a significant
increase in computational cost. Its additional stopping cri-
teria result in fewer generated nodes, making it unsuitable
for estimating continuous fixed effects and often only iden-
tifying strong signals.
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3.3 VCM and its combination with tree

In addition to the marginal model and LMM for longitu-
dinal data, there also exists a traditional model which has a
meaningful interpretation and retains flexibility. This model
is referred to as a varying coefficient model:

y(t) = xT (t)β(t) + ε(t).

In such a model, each component of the coefficient βj(t)
is a function of the conditional variable t and describes the
relationship between the response and covariate over time.
Compared with LMM, it allows the constant parameters to
evolve with certain characteristics and capture the dynami-
cal pattern of this relationship.

Similar to the methods we reviewed in Section 2, the com-
mon practice to approximate β(t) is to use a linear combina-
tion of basic functions. One widely acknowledged approach
is the smoothing spline method proposed by Hoover et al.
[20] to minimize the penalized least squares criterion:

N∑
i=1

ni∑
j=1

[
yij −

{
p∑

l=1

xijlβl (tij)

}]2

+

p∑
l=1

λl

∫ {
β
(2)
l (t)

}2

dt,

where (λ1, . . . , λp)
T

are smoothing parameters . For each
l, βl (t) =

∑q
k=1 γlkBk(t), and xijl is the lth component of

xij . Parameter optimization is the same as in Section 2.4. A
follow-up of their work is the polynomial spline proposed by
Huang et al. [23] and the asymptotic distributions are de-
rived. In addition to these two types of methods, the third
popular type is the kernel approach which can be found in
Wu et al. [59], Fan et al. [11]. Lately, Wang et al. [57] pro-
posed an adaptive spline fitting method and showed that the
new method can achieve significantly smaller mean squared
errors.

A somewhat puzzling phenomenon observed is that many
varying-coefficient-based methods ignore the correlation
structure when estimating β(t), even if some of them are
actually designed for longitudinal data, such as Huang et al.
[23], Hoover et al. [20], and Wu et al. [60], as well as kernel
approach. The kernel approach might be similar to kernel
GEE, which cannot incorporate the within-subject correla-
tion. Another reason may be the lack of estimation methods
for the correlation structure in the early stages, and a mis-
specified working matrix could increase the mean squared
error. Fan et al. [10] and Sun et al. [52] provided a system-
atic study of the estimation of the within-subject correla-
tion structure with semiparametric varying-coefficient mod-
els. For a more detailed review of major methodological and
theoretical developments on varying coefficient models, see
Fan and Zhang [12].

There have been several studies on combining regression
trees with VCM for iid data. Wang et al. [56] and Zhou et
al. [67] developed boosted trees to estimate the varying co-
efficient β(s), where s is a multidimensional variable that is

not limited to scalar time t. The latter work also proved the-
oretical consistency under mild assumptions. More recently,
Deshpande et al. [8] proposed a method called VC-BART,
which uses Bayesian trees to approximate β(s) and can han-
dle correlated observations.

3.4 Other nonparametric regression
approaches

So far, we have briefly discussed several nonparametric
approaches for longitudinal data, mainly related to regres-
sion trees. These methods mainly focus on improving the ac-
curacy of prediction. However, there are other works that fo-
cus on different aspects rather than prediction performance.
For example, Calhoun et al. [5] proposed repeated measures
random forests (RMRF), which focus on finding informative
variables associated with y. This type of work is essential
for medical and economic research. At each node, a random
variable and a random cut-point are selected, and the candi-
date split is accepted or rejected based on hypothesis testing
about the significance of parameters in GEE after splitting.
Simulation results show that RMRF captures informative
variables more often than naive regression trees.

Furthermore, the REEM tree and GLMM tree treat fixed
effects as new responses for training. However, this idea need
not be limited to regression trees. For example, Mandel et
al. [34] offered a generalized neural network mixed model
(GNMM) that replaces the linear fixed effect with the out-
put of a feed-forward neural network and provided a bounds
analysis for prediction error. Therefore, this direction de-
serves further study in the future. In addition to our review,
for more details on tree-based methods for longitudinal data,
see Hu et al. [22].

4. SIMULATION

The goal of this section is to compare the practical per-
formance of the methods described above. As discussed in
Sections 2−3, each method may have different assumptions
for the underlying model, and the estimation method may
also vary accordingly, leading to differences in estimation
efficiency under different scenarios. We investigate the esti-
mation efficiency under the L1 loss of these methods, as the
L2 loss has been extensively studied in previous literature.
Generally speaking, L2 is much more sensitive to outliers,
while L1 is less sensitive and hence more stable. We define
the mean absolute error (MAE) as follows:

MAE =

ntest∑
i=1

|yi − ŷ(xi)|/ntest.

Specifically, we introduce our simulation settings for uni-
variate and multivariate cases in Sections 4.1 and 4.2, and
present the numerical comparisons in Section 4.3. It is chal-
lenging to conduct comprehensive theoretical analyses of the
efficiency of these methods, and we will not discuss them
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in this article. Thus, the numerical simulation results can
briefly reflect these properties.

For each configuration, we generated 200 random
datasets from the model:

yij = μ (xij) + εij .

4.1 Simulation models of univariate case

Because one of our goals is to compare the performance of
each method under different covariance specifications, we as-
sume that the covariance matrix is known and optimize the
smoothing parameter λ for the smoothing spline, the band-
width parameter h for the kernel function, and the number
of knots in regression splines using the same criterion, by
minimizing the MAE on a grid of values. When calculating
the kernel estimates, we use the Epanechnikov kernel func-
tion, which is defined as K (xij − x) =

(
1− |xij − x|2

)
+
.

We consider the case where ni = m and investigate how the
efficiency of different methods changes with the sample size
N , m, and correlation coefficient ρ.

The noise, (εi1, . . . , εim), is generated from N(0, 1) and
one of the four correlation structures is used as follows:

• EX: exchangeable with a common correlation ρ;
• AR: first-order autoregressive process with correlation

ρ;
• US: consider this matrix only when m = 3, unstruc-

tured with ρ12 = ρ23 = ρ and ρ13 = 0.5, where ρjk is
the correlation between εij and εik, j �= k;

• ID: zero correlations, i.e. independence.

In recent years, it has been found that the random forests
estimator can be viewed as a weighted average of the train-
ing responses, and the weight is defined as:

(12) wx (xi) =
1

B

B∑
k=1

I (xi ∈ L(k,x))
|L(k,x)| ,

where B is the total number of regression trees and L(k,x)
is the leave containing x of the kth tree. Random forests are
a promising tool for high-dimensional statistical learning,
and a natural idea would be to replace the traditional ker-
nel function with random forests weight which can avoid the
curse of dimensionality caused by the kernel function. Thus
we also explore what will happen if we replace the kernel
function in the SUR estimator with the distributional ran-
dom forest weight introduced in Cevid et al. [7] which is
more concerned about the homogeneity of the distribution
within the node when building forests. We denote it as the
SUR-RFW method.

Scenario 1. We evaluate the performance of each
method under various types of smooth models as well as
a non-smooth model. The predictors xij are generated from
Un(−2, 2). We select the following nonlinear functions:

• Model 1:
μ(z) = {z(1−z)}1/2 sin

{
2π

(
1 + 2−3/5

)
/
(
z + 2−3/5

)}
,

• Model 2:
μ(z) = {z(1−z)}1/2 sin

{
2π

(
1 + 2−7/5

)
/
(
z + 2−7/5

)}
,

• Model 3:
μ(z) = sin(8z − 4) + 2 exp

{
−256(z − 0 · 5)2

}
,

• Model 4:
μ(z) = 0.5I(z ≤ 0.5)− 0.5I(z > 0.5),

where z = (x+ 2)/4.
We present the MAE for different true working matrices,

which include AR, EX, US, and ID, as well as the MAE ra-
tios for using a true working matrix (AR, EX, US) compared
to the independent one. This investigation allows us to as-
sess the average error of each method for different settings
and the influence of using the real working matrix.

4.2 Simulation models of multivariate case

In this section, we introduce additional variables and
compare the performance of each method using baseline co-
variates in Scenario 2 and time-varying covariates in Sce-
nario 3. We evaluate how changes in sample size, dimen-
sionality, and smoothness of the underlying models im-
pact the methods’ performance. For each model, let εij =

vi+eij , eij
i.i.d.∼ N(0, 4), vi ∼ N(0, 4) and use a standardized

L1 loss in Scenario 2 and 3:

SMAE =
MAE

σ̂(y)
,

where σ̂(y) is the empirical standard deviation of the re-
sponse.

Scenario 2.We assess the performance of different meth-
ods using both the smooth model from Pande et al. [37] and
the non-smooth model from Pande et al. [36] for baseline
covariates. Although it may appear similar to Scenario 1,
where the change in yi is solely dependent on t for each in-
dividual, given x∗

i , in this case, the x∗
i values differ for each

individual. Consequently, the marginal distribution varies
from one individual to another.

Model 1 for baseline covariates:

μij(x
∗
i , tij) = 1.5 + 2.5xi1 + 10xi3 − 0.2 exp (xi4)

− 0.65t2ij (xi2)
2
xi3,

where for each subject i

x1 ∼ N(0, 1), x2 ∼ Un(1, 2),

x3 ∼ Un(2, 3), x4 ∼ N(0, 1),

xl
i.i.d.∼ N(0, 1), l = 5, . . . , p, are unrelated feature.

For each subject i, time values tij for j = 1, . . . , ni are
sampled with replacement from {1/3, 2/3, . . . , 3}, where the
number of time points ni is drawn randomly from {1, . . . , 9}.

Model 2 for baseline covariates:

μij(x
∗
i , tij) = 1.5 + 2xi3 + 0.5x2

i4

+ I(tij≤2)1.5xi1 + I(tij>2)1.2xi2,
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where for each subject i

x1 ∼ Un(1, 3), x2 ∼ N(2, 1),

x3 ∼ N(0, 4), x4 ∼ Un(0, 2),

xl
i.i.d.∼ N(0, 1), l = 5, . . . , p, are unrelated features.

For each subject i, time values tij for j = 1, . . . , ni are sam-
pled from Un(0, 6) where the number of time points ni is
drawn randomly from {15, 16, 17}.

Scenario 3. In this scenario, x is a time-varying covariate
vector, which is more common in practical applications. This
means that yi changes not only with t, but also with the re-
peated measurements of x, making the model more flexible
and complex. Further differences can be seen by compar-
ing the performance of these methods under Scenario 2 and
Scenario 3. Common models include time-varying coefficient
models and nonlinear mixed effects models. For each indi-
vidual i, ni is drawn randomly from {3, 4, . . . 10}, and time
tij for are sampled from Un(0, 6).

Model 1 as the varying coefficient model:

μi (xij , tij) =

4∑
l=1

βl (tij)xijl (tij) ,

where for each subject i

x1(t) = 1, x2(t) ∼ Bern(0.6), x3(t) ∼ Un(0.1t, 2 + 0.1t),

x4(t) | x3(t) ∼ N

(
0,

1 + x3(t)

2 + x3(t)

)
,

xl(t)
i.i.d.∼ N(0, 4), l = 5, . . . , p, are unrelated feature

β1(t) = 1 + 3.5 sin(t− 3), β2(t) = 2− 5 cos(0.75t− 0.25),

β3(t)=4−0.04(t−12)2, β4(t)=1+0.125t+4.6(1−0.1t)3.

Model 2 for time-varying covariates:

μij(xij , tij) = 2x0.5
ij1 + 1.3x2

ij2 + 5sin(xij3 + xij4),

where for each subject i

x1(t) ∼ Un(0.05 + 0.1t, 2.05 + 0.1t),

x2(t) ∼ N(3 exp{(t+ 0.5)/30}, 1),
x3(t) ∼ Un(2, 4)− 3 cos{π(t− 24.5)/15},
x4 ∼ N(0, 0.1t2),

xj(t)
i.i.d.∼ N(0, 4), j = 5, . . . , p, are unrelated feature.

Model 3 for time-varying covariates:

μij(xij , tij) =2x0.5
ij1 + 1.3x2

ij2 + I(tij<2.5)5sin(xij3 + xij4)

+ I(tij>3)exp(0.5xij1),

where the distribution of xij are the same as Model 2 with
time-varying covariates.

The prediction errors are calculated based on the new
measurements of the training individuals. For the REEM
tree and VCM methods, we implement the procedures in-
troduced by Capitaine et al. [6] and Wang et al. [57], re-
spectively. For GLMMtree, we let ssp = srg = x. Due to the
rapidly increasing computational burden of RETCO with
increasing depth, we have restricted the maximum depth to
3. Therefore, the performance of RETCO is expected to be
poor.

4.3 Simulation outcomes

Since the FPCA method performs poorly when m is
small, we only list the results of m = 10 and m = 15. In
addition, as FPCA is not based on traditional longitudinal
data models, we did not assume the working matrix for it.
Table 1 compares the efficiency of using the true covariance
relative to the independence matrix for each method, and
we can draw the following conclusions:

• There is little improvement in efficiency when using
the true covariance in kernel GEE, but the remaining
methods reduce the MAE when the matrix is correctly
specified. This improvement increases as the correlation
becomes stronger. This provides evidence that incor-
porating the within-subject correlation structure into
the estimation procedure is crucial for longitudinal data
analysis.

• In general, the SUR and smoothing regression methods
perform the best among all the methods in different
types of models. The SUR method further utilizes the
information inVi compared to the kernel GEE method.
The smoothing spline method uses more knots than
the regression spline method to fit flexible and com-
plex models and adds smoothness penalties to improve
generalization performance. However, the cost of both
methods is a significant increase in computation time.

• Additionally, even in a one-dimensional case, when the
sample size is large enough, the performance of the ran-
dom forest weight method can be on par with that of
traditional kernel methods. Therefore, the traditional
kernel method may benefit from further development
by incorporating the advantages of random forest in
high-dimensional data. We also attempted to replace
the kernel function with the generalized random forest
(GRF) weight used in Athey et al. [1], but the per-
formance is very poor, indicating that the choice of a
suitable random forest is also a topic worth exploring.

• Although improving the utilization of the working ma-
trix, the LLME with the true covariance matrix, does
not demonstrate advantages over kernel GEE in the
simulation, since the random effects can not be identi-
fied to help predict. FPCA is derived from the study
of functional data; thus, it may lack competitiveness in
the context of usual longitudinal data. However, it has
demonstrated a certain level of robustness to different
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Table 1. Simulation Result for the univariate case under Scenario 1

Average of MAE using true Average of MAE ratio using true versus ID

Setting Method M1 M2 M3 M4 M1 M2 M3 M4

KGEE 0.1541 0.1803 0.2147 0.1757 0.9907 0.9820 0.9904 0.9821
N=50 SUR 0.1412 0.1646 0.1941 0.1640 0.8897 0.8698 0.8432 0.9017
m=3 SUR-RFW 0.1675 0.2014 0.2975 0.1701 0.9857 0.9886 0.9530 0.9356
ρ = 0.6 R-spline 0.1614 0.1875 0.3152 0.1976 0.8638 0.8732 0.9572 0.9250

S-spline 0.1380 0.1795 0.2619 0.1633 0.8822 0.9097 0.8750 0.9122
LLME 0.1567 0.2019 0.3238 0.1802 0.9054 0.9457 0.8576 0.9363

KGEE 0.1118 0.1385 0.1693 0.1400 0.9556 0.9882 0.9912 0.9806
N=100 SUR 0.1047 0.1238 0.1567 0.1299 0.8965 0.8799 0.9183 0.8972
m=3 SUR-RFW 0.1089 0.1338 0.1735 0.1247 0.8457 0.9042 0.9090 0.8670
ρ = 0.6 R-spline 0.1201 0.1412 0.2794 0.1572 0.8598 0.8778 0.9902 0.8854

S-spline 0.0997 0.1400 0.2112 0.1291 0.8183 0.8670 0.8693 0.8959
LLME 0.1251 0.1798 0.3021 0.1469 0.8632 0.9123 0.8482 0.8997

KGEE 0.0975 0.1167 0.1485 0.1224 0.9801 0.9776 0.9787 0.9876
N=150 SUR 0.0873 0.1087 0.1400 0.1112 0.8491 0.8844 0.9225 0.8724
m=3 SUR-RFW 0.0970 0.1117 0.1343 0.1147 0.8378 0.8554 0.8973 0.8626
ρ = 0.6 R-spline 0.1022 0.1235 0.2666 0.1421 0.8682 0.8997 0.9941 0.9180

S-spline 0.0872 0.1229 0.1848 0.1149 0.8915 0.8663 0.8623 0.8931
LLME 0.1106 0.1652 0.2822 0.1359 0.8379 0.8935 0.8361 0.9018

KGEE 0.1479 0.1769 0.2134 0.1709 0.9679 1.0013 0.9805 0.9656
N=50 SUR 0.1454 0.1729 0.2094 0.1680 0.9849 0.9579 0.9654 0.9450
m=3 SUR-RFW 0.1605 0.2024 0.2985 0.1709 0.9575 0.9978 0.9901 0.9781
ρ = 0.3 R-spline 0.1679 0.1962 0.3208 0.2005 0.9348 0.9610 0.9835 0.9748

S-spline 0.1404 0.1877 0.2731 0.1665 0.9438 0.9693 0.9513 0.9665
LLME 0.1588 0.2045 0.3346 0.1779 0.9835 0.9733 0.9215 0.9759

KGEE 0.1558 0.1826 0.2212 0.1810 1.0032 0.9771 0.9874 0.9895
N=50 SUR 0.1307 0.1547 0.1845 0.1541 0.7899 0.7915 0.7908 0.8287
m=3 SUR-RFW 0.1602 0.1961 0.2937 0.1694 0.8758 0.9150 0.9375 0.9155
ρ = 0.8 R-spline 0.1472 0.1772 0.3201 0.1894 0.7374 0.7955 0.9744 0.8676

S-spline 0.1272 0.1627 0.2382 0.1543 0.7706 0.7762 0.7622 0.8103
LLME 0.1574 0.1992 0.3170 0.1799 0.8771 0.9087 0.8265 0.9372

KGEE 0.1015 0.1215 0.1502 0.1266 0.9655 1.0015 0.9763 0.9782
N=50 SUR 0.0925 0.1098 0.1452 0.1155 0.8447 0.8542 0.9020 0.8521
m=10 SUR-RFW 0.1031 0.1146 0.1342 0.1208 0.8281 0.8678 0.8764 0.8532
ρ = 0.6 R-spline 0.1055 0.1304 0.2861 0.1493 0.8807 0.9562 1.1003 0.9544

S-spline 0.0910 0.1246 0.1839 0.1163 0.8701 0.8500 0.8506 0.8550
LLME 0.1200 0.1707 0.2939 0.1406 0.8038 0.8712 0.8071 0.8746
FPCA 0.1498 0.1513 0.1555 0.1585 * * * *

KGEE 0.0912 0.1074 0.1381 0.1152 0.9924 1.0117 0.9750 0.9934
N=50 SUR 0.0821 0.0993 0.1343 0.1042 0.9009 0.8854 0.9181 0.8918
m=15 SUR-RFW 0.1007 0.1060 0.1145 0.1124 0.8125 0.8084 0.8673 0.8257
ρ = 0.6 R-spline 0.0927 0.1252 0.2839 0.1450 0.8477 1.0205 1.1379 1.0321

S-spline 0.0795 0.1088 0.1649 0.1072 0.8480 0.8416 0.8361 0.8606
LLME 0.1128 0.1668 0.2865 0.1358 0.7993 0.8604 0.7837 0.8763
FPCA 0.1306 0.1298 0.1368 0.1382 * * * *

Note: the FPCA method performs poorly when m is small, we only list the results for m = 10 and m = 15. Additionally, we do
not assume the true working matrix for FPCA, so only compare its practical MAE and denote the MAE ratio with an asterisk
(*). Values displayed in bold indicate the winning method for each experiment.
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models, making it a preferred choice when the underly-
ing model is complex and the data is dense.

In Scenario 2. we consider x to be time-invariant covari-
ates and it is necessary to mention that both GLMM tree
and VCM methods may encounter challenges in solving sin-
gular matrices in this scenario. In such situations, we only
consider the cases from the non-singular portions. It can be
observed in Table 2:

• Splinetree does not confer any advantages for base-
line covariates. In Model 1, insufficient repeated mea-
surements might result in poor fitting when project-
ing individual-specific growth curves. Even with an in-
creased size of ni in Model 2, the performance remains
unsatisfactory. This may indicate that splinetree has
poor generalization ability due to its neglect of internal
correlations within individuals.

• Boostmtree achieves the lowest SMAE in Model 1, but
the SMAE of the piecewise function increases signifi-
cantly compared to the continuous case. This may be
due to the increased complexity of the interaction be-
tween the variable t and x∗, making gradient approxi-
mation more difficult during the boosting process. Even
with an increase in sample size, there is no observed im-
provement in the results.

• The historical tree degenerates into a traditional ran-
dom forest for baseline covariate and performs much
better in the continuous case than the piecewise one.

• The potential model dramatically influences the per-
formance of the REEM tree and GLMMtree. When the

sample size increases, both of them provide better per-
formance. In this scenario, the REEM tree always per-
forms better than GLMMtree.

• VCM shows robustness to changes in p while it is af-
fected by the smoothness of the latent model.

In Scenario 3. we consider x as time-varying covariates
and it can be found in Table 3:

• When many time-varying covariates are present, the
performance of the historical tree declines. This may
be attributed to the influence of noisy features and the
summary function’s inability to effectively capture the
longitudinal data structure.

• Similarly, we observe that the model, sample size, and
dimensionality have a significant impact on the perfor-
mance of GLMMtree and REEM tree. However, when
there are enough observations, the GLMMtree consis-
tently outperforms the REEM tree. In cases where p is
large relative to the sample size, the REEM tree may
be a better choice to handle the data.

• The VCM method is still barely impacted by changes
in p. The model complexity and sample size have less
influence on it. This may be attributed to the adaptive
selection of predictor-specific knots employed by Wang
et al. [57] when constructing basic splines to fit the
coefficients in varying coefficient models.

• Due to the small number of nodes generated (no more
than 8), RETCO performs poorly in predicting contin-
uous fixed effects. In addition, in the simulation, it is
found that RETCO can only identify strong signals. For
example, in model 2, it mostly only splits based on x2.

Table 2. Simulation Result for baseline covariates under Scenario 2

SMAE

M1 M2

N=50 N=100 N=150 N=50 N=100 N=150

p=5 Splinetree 0.4598 0.4451 0.3745 0.6367 0.5761 0.5600
Boostmtree 0.1661 0.1568 0.1564 0.3550 0.3529 0.3638
historical tree 0.3737 0.3274 0.3019 0.4565 0.4411 0.4375
REEM 0.2381 0.2073 0.1923 0.3400 0.3387 0.3385
VCM 0.2134 0.2147 0.2102 0.4559 0.4574 0.4564
GLMMtree 0.2186 0.1596 0.1483 0.3488 0.3402 0.3333

p=15 Splinetree 0.4619 0.4481 0.3755 0.6003 0.5253 0.5056
Boostmtree 0.1713 0.1568 0.1543 0.3590 0.3483 0.3522
historical tree 0.4058 0.3487 0.3261 0.4682 0.4515 0.4482
REEM 0.2567 0.2249 0.2096 0.3415 0.3408 0.3394
VCM 0.2245 0.2107 0.2110 0.4570 0.4489 0.4458
GLMMtree 0.3249 0.2321 0.2021 0.3512 0.3433 0.3453

p=30 Splinetree 0.4618 0.4469 0.3795 0.5939 0.5165 0.4949
Boostmtree 0.1789 0.1580 0.1549 0.3774 0.3667 0.3565
historical tree 0.4417 0.3944 0.3676 0.4861 0.4632 0.4627
REEM 0.2586 0.2282 0.2113 0.3462 0.3454 0.3367
VCM 0.2206 0.2070 0.2095 0.4530 0.4499 0.4479
GLMMtree 0.3398 0.3269 0.2413 0.3517 0.3497 0.3452

Note: Values displayed in bold indicate the winning method for each experiment.
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Table 3. Simulation Result for varying covariates under Scenario 3

SMAE

M1 M2 M3

N=50 N=100 N=150 N=50 N=100 N=150 N=50 N=100 N=150

p=5 historical tree 0.4537 0.3960 0.3794 0.4133 0.3685 0.3483 0.3757 0.3371 0.3194
REEM 0.3087 0.2815 0.2707 0.3244 0.2941 0.2772 0.2905 0.2637 0.2432
VCM 0.3461 0.3345 0.3302 0.3461 0.3341 0.3338 0.3017 0.2947 0.2919
GLMMtree 0.2563 0.2256 0.2230 0.2896 0.2572 0.2468 0.2358 0.2129 0.2081
RETCO 0.5626 0.5505 0.5422 0.5162 0.5258 0.5062 0.4732 0.4690 0.4476

p=15 historical tree 0.4960 0.4497 0.4193 0.4483 0.4051 0.3785 0.4125 0.3672 0.3466
REEM 0.3485 0.3030 0.2871 0.3645 0.3291 0.3102 0.3174 0.2884 0.2693
VCM 0.3483 0.3356 0.3323 0.3323 0.3399 0.3371 0.2888 0.2886 0.2883
GLMMtree 0.3897 0.2840 0.2308 0.3484 0.2959 0.2739 0.2811 0.2419 0.2148
RETCO 0.5679 0.5525 0.5444 0.5285 0.5148 0.5055 0.4786 0.4617 0.4644

p=30 historical tree 0.5884 0.5270 0.4984 0.5262 0.4769 0.4436 0.4891 0.4326 0.4130
REEM 0.3652 0.3211 0.2972 0.3900 0.3435 0.3226 0.3295 0.2890 0.2735
VCM 0.3437 0.3380 0.3309 0.3493 0.3361 0.3338 0.3066 0.2915 0.2904
GLMMtree 0.4027 0.3872 0.2933 0.3616 0.3454 0.3125 0.2872 0.2803 0.2475
RETCO 0.5672 0.5534 0.5483 0.5395 0.5245 0.5091 0.5001 0.4879 0.4603

Note: Values displayed in bold indicate the winning method for each experiment.

This may be attributed to the new stopping rule. While
such a dilemma may potentially be solved by increasing
the depth, the computation time required for this ap-
proach would be significantly longer than that of other
methods.

• Comparing the SMAE in Model 2 from Scenario 2 and
Model 3 in Scenario 3, we observe that even with sim-
ilar models, differences in the varying covariates and
baseline covariates can have a significant impact on pre-
diction errors. This is mainly because it affects whether
the repeated measurements belonging to the same indi-
vidual will be split into different child nodes when the
node is partitioned on x.

In general, when x∗ are baseline covariates, boostmtree
and REEM tree are recommended for smooth signals. How-
ever, when x are time-varying covariates, the GLMMtree
may perform better when N is large. In high-dimensional
cases, the REEM tree is expected to be more appropriate.
In any case, VCM shows its robustness.

5. DISCUSSIONS

In this paper, we present a selective review of nonpara-
metric methods for longitudinal data analysis. Excluding
the classical univariate methods we only focus on the major
developments in combining regression trees with longitudi-
nal data models. These methods have evolved from different
models and possess unique features. The marginal model
assumes fewer restrictions than the LMM model, which is
more commonly used and includes an analysis of random
effects. The VCM model is the most extensive but requires
a more complex estimation process. While the methods that

only consider the influence of univariate time t on the re-
sponse variable have been widely studied in the past, the
SUR method and smoothing spline have shown the best per-
formance in our review, although at the cost of higher com-
putational complexity. Recent technological advances high-
light the need to include more covariates related to the re-
sponse variable to investigate their relationships. To this
end, the use of regression trees for longitudinal data anal-
ysis has become a popular trend. In Scenarios 2 and 3, we
briefly compare their performances under classical models.
The outcomes show that there is no one method that uni-
formly outperforms the others in practice, therefore it is
necessary to select the appropriate method based on the
specific background. Although some methods showed sub-
optimal performance in our simulations, we emphasize that
this paper primarily focuses on reviewing the motivations
and ideas behind different methods, and our simulation re-
sults are provided for reference only.

In addition to the reviewed methods, there have also been
advancements in parametric and semiparametric models in
recent years. Wang et al. [58] extended the GEE method
to high-dimensional cases, and Kamruzzaman et al. [25]
generalized the response variable of the GEE to a vector
based on their ideas. In semiparametric models, Gottard et
al. [17] used regression trees to capture non-linearities while
retaining the linear part of the LMM. Model-based methods,
such as boosting in Hothorn et al. [21] for additive models
and MOB in Zeileis et al. [66] used in GLMM trees, can
also be employed to combine various parametric and non-
parametric models for longitudinal data analysis.

For future directions in methodology development, the
first idea is to extend the work in Segal [45] by finding a cri-
terion that enables splitting on time-varying covariates in
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recognition of the flexible relationship between the response
and the covariates when the repeated measurements of y
or their projection are used as a vector response variable.
This would allow for the extension of many existing meth-
ods to a more general case. For example, in the simulation,
boostmtree shows competitiveness when it comes to baseline
covariates, but its requirements for x∗ limit its practical ap-
plications. It is a challenging task to preserve its superiority
in baseline covariates and its ability to partition on varying
covariates.

Secondly, we suggest exploring the use of different types
of machine learning and deep learning methods to estimate
fixed effects and even random effects in LMM, building on
the spirit of methods like the REEM tree. Different machine
learning methods have their own advantages, allowing us to
make more appropriate choices under different models. Cur-
rently, although Mandel et al. [34] have started using neu-
ral networks, similar work is still insufficient. Furthermore,
it is known that inaccurate specification of random effects
may adversely impact the precision of both REEM trees and
GLMM trees. We can use some nonparametric methods to
estimate them, such as Capitaine et al. [6], which incorpo-
rated a random process ωi(tij) in addition to linear random
effects. This idea can be further generalized.

The third direction is the local estimation. This method
may present two challenges. The first challenge is to de-
termine an appropriate local estimation method, especially
when the sample size is small compared to the dimension-
ality. In the GLMM tree, a linear model is fitted within
each node, but when the sample size is not large enough,
correctly specifying fixed-effects predictor variables becomes
important. Recently, Friedberg et al. [15] presented the local
linear forest, which fits a ridge regression within each node
to remove the influence of noise features in high-dimensional
cases, providing a potential solution to this challenge. The
second challenge is selecting an appropriate impurity mea-
sure for best splitting in such cases. The parameter model
is now commonly used for local estimation due to its ex-
tensively researched robustness test of parameter estima-
tors. Additionally, the loss function for correlated data in
RETCO provides another tool.

Another purpose of this paper is to investigate the feasi-
bility of combining the kernel method for longitudinal data
with random forest weights. While some articles have ap-
plied random forest weights to other problems, such as Qiu
et al. [38], who replaced the kernel function in traditional
Fréchet regression with random forest weights and provided
theoretical analysis, and Friedberg et al. [15], who used it
for smoothing signals, more work needs to be done to apply
random forest weights to longitudinal data analysis. There-
fore, our forthcoming investigations will concentrate on this
direction.
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