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A random projection method for large-scale
community detection∗

Haobo Qi, Xuening Zhu
†
, and Hansheng Wang

In this work, we consider a random projection method
for a large-scale community detection task. We introduce a
random Gaussian matrix that generates several projections
on the column space of the network adjacency matrix. The
k-means algorithm is then applied with the low-dimensional
projected matrix. The computational complexity is much
lower than that of the classic spectral clustering methods.
Furthermore, the algorithm is easy to implement and acces-
sible for privacy preservation. We can theoretically estab-
lish a strong consistency result of the algorithm under the
stochastic block model. Extensive numerical studies are con-
ducted to verify the theoretical findings and illustrate the
usefulness of the proposed method.
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1. INTRODUCTION

With the rapid development of online network platforms,
network data modelling has received great attention. One
of the most important tasks is community detection. Com-
munity refers to a latent group of network nodes, which are
more likely to be connected with each other. In contrast,
the nodes from different communities are less likely to form
links. For example, people sharing a common preference or
coming from the same neighborhood are more likely to inter-
act in social networks. Discovering the community structure
has been proven useful in a wide range of scientific fields, in-
cluding social network analysis [32, 22], financial risk anal-
ysis [14], biological studies [25, 24] and many others. This
makes community detection one of the most fundamental
and interesting topics in network data analysis.

A large amount of literature on community detection
has been developed in recent decades. Early approaches
were mainly algorithm-based without model assumptions.
To name a few, [26] proposed the detection of hierarchical
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community by using certain types of edge betweeness of net-
work nodes. Later, [27] revised the algorithm by designing
an optimal stopping rule based on a novel modularity mea-
sure. [7] further improved the computational efficiency of the
algorithm to apply it to large-scale networks. The modular-
ity maximization framework inspired many follow-up stud-
ies [30, 28, 8]. Another major class of methods has been
established under statistical model assumptions. One of the
most popular models is the stochastic block model (SBM)
proposed by [11]. This model assumes that the nodes from
the same community should have a greater probability of
being connected. In contrast, the nodes from different com-
munities should have a much smaller likelihood. [17] further
characterize the nodes’ heterogeneity by devising a degree-
corrected stochastic block model (DC-SBM). Another pop-
ular statistical model is the latent space model proposed by
[10]. This model assumes that the nodes are positioned in a
latent space and that they are more likely to connect if their
latent positions are closer. To estimate the model parame-
ters (i.e., the communities), both likelihood-based methods
[5, 35] and spectral clustering methods [31, 29] are studied.
Community detection consistency is established under vari-
ous model specifications and estimation methods [20, 16, 33].

Despite their usefulness, traditional community detec-
tion methods can present great computational challenges,
especially for large-scale networks. Consider for example,
the largest social network platform in the world: Facebook,.
It has more than 1 billion registered users worldwide. An-
other famous online social platform in mainland China, Sina
Weibo, also has more than 100 million active users. For these
large-scale networks, the traditional methods suffer greatly
from computational costs. Take the modularity method of
[27] as an example. As analyzed by [7], its computational
complexity is O(MN +N2), where M and N represent the
total number of edges and nodes in the network, respec-
tively. The computational complexity of the spectral clus-
tering method is even higher. This is because the eigenvalue
decomposition in spectral clustering consumes a computa-
tional complexity of O(N3). The pseudo likelihood method
of [3] typically uses spectral clustering to set its initial value,
which makes its computational burden even heavier. The la-
tent space model [10] usually uses Gibbs sampling for pos-
terior estimation, which is also time consuming. As a conse-
quence, how to conduct community detection for large-scale
networks in a computationally efficient way becomes a prob-
lem of great interest.
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To address this issue, we propose a random projection
method for fast community detection with large-scale net-
works. The basic idea is to generate a number of random
directions in an N -dimensional Euclidean space. Each row
of the adjacency matrix is then projected onto these direc-
tions. Therefore, their positions in a low-dimensional pro-
jected space can be computed. Subsequently, the intern-
ode distance can be evaluated for an arbitrary node pair in
the projected space. Under appropriate model assumptions
(e.g., the SBM model), we prove that the internode dis-
tance (after projection) of nodes from different communities
should be uniformly larger than that of nodes from the same
community with probability tending to 1. This suggests that
simple algorithms such as k-means can be employed to con-
sistently discover the community structure. The algorithm is
easy to implement and accessible for privacy preservation.
Furthermore, a novel eigenvalue ratio criterion is adopted
to automatically determine the number of communities. Ex-
tensive simulation studies are conducted to demonstrate the
method’s empirical performances.

The rest of this paper is organized as follows. Section
2 introduces our random projection method for community
detection and then discusses its theoretical properties under
stochastic block model settings. Section 3 presents several
numerical simulation studies to illustrate the finite sample
performance of the proposed method and shows its perfor-
mance in a real-world large-scale network dataset. Section
4 concludes the paper and discusses some interesting future
works. All technical details can be found in the Appendix.

2. METHODOLOGY

2.1 The random projection method

Assume there are a total of N nodes in a network,
which are indexed by 1 ≤ i ≤ N . Their network re-
lationships are described by a network adjacency matrix
A = (aij) ∈ {0, 1}N×N , where aij = 1 if the i-th node
and j-th node are connected to each other, and aij = 0

otherwise. Let di =
∑N

j=1 aij denote the degree of nodes
i and D = diag(d1, ..., dN ). Next, we assume that the net-
work nodes can be grouped into a total of K communities,
which are indexed by 1 ≤ k ≤ K. Let Ci ∈ {1, 2, ...K}
be the community membership of the i-th node. Assume
that the community size for the k-th community is Nk as
Nk =

∑N
i=1 I{Ci = k} for 1 ≤ k ≤ K. We know immedi-

ately that
∑

k Nk = N . The objective here is to detect the
underlying community structure by exploiting the observed
network adjacency matrix A.

As previously discussed, various community detection
methods have been developed in the literature. However, to
the best of our knowledge, it seems that none of those meth-
ods can be used to deal with truly large social networks. To
solve this problem, we propose a novel random projection
method. We first consider an illuminating example. Specif-
ically, suppose that there is a network with only K = 2

communities with equal sizes (N = 2n for some n > 0).
Without loss of generality, we assume that the first n nodes
belong to the first community, and the rest belong to the sec-
ond community. Furthermore, assume that the connecting
probabilities within the communities are p = 1, and con-
nection probabilities across the communities are q = 0. We
consider this ideal case for to illustrate our proposal, and
we later establish our method in more general settings. To
implement our method, we need to first generate a random
projection direction as X = (X1, ..., XN )� ∈ R

N , where
each Xi is randomly generated from, for example, a stan-
dard normal distribution. Then, the projected vector can
be computed as Z = (Z1, Z2, ..., ZN )� = AX ∈ R

N . Simple
calculations reveal that Zi = p

∑n
i=1 Xi for 1 ≤ i ≤ n and

Zi = p
∑N

i=n+1 Xi for i > n. We find that the nodes from
the same community share identical projected locations. In
contrast, the nodes from different communities have differ-
ent projected locations. This immediately suggests that the
community structure can be discovered by a careful study
of Z. More specifically, simple algorithms such as k-means
can be readily used to serve this purpose.

In practice, the problem could be much more complicated
and challenging for the following reasons. First, the intra-
community link probability can never be as large as p = 1.
Instead, it is just a reasonably large number (e.g., p = 0.5).
This obscures the observed community structure in A, which
inevitably makes the projected positions in Z less accurate.
Similarly, even though the inter-community link probability
q should be very small, it can hardly be as small as ex-
actly 0. That also makes the projected position in Z noisy.
Furthermore, the random projection itself also introduces
additional noise, which could be large enough to cover the
signals in Z. As a result, one single random projection di-
rection might be insufficient. In contrast, multiple random
projection directions are necessarily needed.

Inspired by the above discussion, we now propose here
a novel random projection method. The detailed algorithm
in given in Algorithm 1. Specifically, we take the network
adjacency matrix A as an input. Next, with a pre-specified
projection dimension d, we generate a random projection
matrix as X = (X1, ..., Xd) ∈ R

N×d. This leads to the pro-
jected position for each node in a d-dimensional Euclidean
space as Z = AX ∈ R

N×d. Typically, we expect d � N .
Here an � bn implies an/bn → 0 as n → ∞. This enables us
to apply simple algorithms (for example, the k-means algo-
rithm) to Z directly so that the latent community structure
can be discovered.

It is noteworthy that the k-means algorithm can be sen-
sitive to the choice of initial cluster centers. To tackle this
issue, many improvement algorithms have been developed in
the literature. For example, the k-means++ algorithm pro-
posed by [4] uses a novel initialization strategy to stabilize
the performance of classical k-means algorithm. In addition,
the kmeans function in R also provides an option nstart for
specifying the number of initializations. In our numerical
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Algorithm 1 Random Projection Clustering Algorithm

Input: Adjacency matrix A ∈ R
N×N , latent dimension d, target

clustering number K
1: Generate random direction matrix X ∈ R

N×d from some
probability distribution.

2: Calculate random projection matrix Z = AX.
3: Apply the k-means algorithm to the rows of Z.
Output: The clustered label for each node as { ̂C1, ..., ̂CN}.

studies, we use the kmeans function in R to implement the
experiments and set a large nstart number (e.g., 10) to ob-
tain more stable results.

Next, we discuss the computational advantages of the
proposed method with respect to computational complexity.
As shown in Algorithm 1, the random projection method
can be divided into two main steps. The first step is the
projection step. That is, the adjacency matrix A is pro-
jected in several random directions X into Z ∈ R

N×d. This
leads to a total of O(N2d) computation operations. How-
ever, in practice, the adjacency matrix A can be sparse. As
a consequence, it can be stored as a sparse matrix [7] and
then computed accordingly. In this case, the computational
complexity is mainly determined by the number of edges
(rather than the network sizes). Assume the total number
of edges is given by M =

∑
ij aij . Then, the computational

complexity of this projection step can be significantly re-
duced to O(Md). The second step of our algorithm is the
clustering step. This is a standard k-means algorithm oper-
ated on d-dimensional features, which consumes a computa-
tional complexity of O(NKd). As a consequence, the total
computational complexity is O(Md+NKd). As a compari-
son, the computational complexity for spectral clustering is
O(N2K +NK2), which could be much higher than that of
the proposed method.

2.2 Strong consistency for SBM

As we discussed previously, the proposed random projec-
tion method is simple and computationally efficient. How-
ever, its statistical properties remain unknown. To address
this important question, we next study its theoretical prop-
erties under an appropriately assumed model structure.
Here, we focus on the arguably most popular model for com-
munity detection, that is, the stochastic block model (SBM)
studied by [11]. Specifically, we assume an SBM with a total
of K communities. We use Ci ∈ {1, 2, , ...,K} as the commu-
nity membership of the i-th node. Write P (aij = 1) = pij
and P = (pij) ∈ R

N×N . The SBM assumes that pij =
bCi,Cj , where B = (bkl) ∈ R

K×K is a K×K symmetric ma-
trix with each entry bkl ∈ [0, 1] for 1 ≤ k, l ≤ K. It can be
verified that P = GBG�, where G = (G�

1 , ..., G
�
N ) ∈ R

N×K

is a membership matrix with Gik = 1 if node i belongs to
the k-th community and Gik = 0 otherwise. To establish
the consistency result of the proposed method, we present
a number of important technical conditions as follows.

(A1) (Community Size) Let n = N/K; then, there exist

two positive constants 0 < c
(1)
min < c

(1)
max such that the

community sizes satisfy c
(1)
minn ≤ mink Nk ≤ maxk Nk ≤

c
(1)
maxn.

(A2) (Connecting Probability) There exist two posi-

tive constants 0 < c
(2)
min < c

(2)
max, such that c

(2)
minθn ≤

mink bkk ≤ maxk bkk ≤ c
(2)
maxθn, where nθn � logN as

n → ∞. Furthermore, we assume that
∑

l �=k bkl � bkk
as n → ∞ for k = 1, ...,K.

The first condition requires different community sizes to
be of the same order. This is a standard assumption that
has typically been assumed in literature; see, for example,
[9] and [12]. This condition enables the subsequent theoret-
ical development to be relatively easier. The second con-
dition defines the key characteristic of a community. That
is, the nodes belonging to the same community should be
connected with higher probability than nodes from different
communities.

We then study the separability of the projected vectors.
Ideally, we wish different nodes to be well separated from
each other by their projected vectors according to their com-
munity membership. Specifically, recall that Zi ∈ R

d is the
projected vector from the ith node. Then, nodes from dif-
ferent communities naturally form different groups in terms
of Zi. For each community, we can then compute its com-
munity center as α̂k = N−1

k

∑
Cj=k Zj for 1 ≤ k ≤ K.

Next, we can compute the distance between Zi and ev-
ery possible group center as δi,k = ‖Zi − α̂k‖2. Obviously,
we wish the node of interest to stay closer to the com-
munity center to which it belongs, compared with other
community centers, that is, δi,Ci < min δi,k for k 
= Ci

and 1 ≤ i ≤ N . That enables us to consider an event set
E = {maxi,k:Ci=k δi,k < mini,k:Ci �=k δi,k}. It is then of great
interest to ask how likely this desirable situation is.

As one can expect, this is a very challenging task. We
attempt to address this problem in several steps. In the first
step, we study the mean and variance of δi,k according to
different scenarios. Next, we combine all those preliminary
but important findings to form powerful non-asymptotic re-
sults to quantify the likelihood of the event of interest E .
We start by analyzing E(δi,k) first. For the simplicity of no-
tations, we assume that Ci = k while the target community
changes to k′ in the following two propositions.

Proposition 2.1. Suppose assumptions (A1) and (A2)
hold. For a pre-specified dimension d, suppose that X =
(Xij) ∈ R

N×d with each entry following a standard normal
distribution N(0, 1) independently for 1 ≤ i ≤ N, 1 ≤ j ≤ d.
For arbitrary node i with Ci = k, we have

E(δi,k′) =

⎧⎪⎪⎨⎪⎪⎩
dNkbkk − dNkb

2
kk + o(dnθ2n)
for k′ = k,

dNkbkk + dNk′b2k′,k′ + o(dnθ2n)

for k′ 
= k.

(1)
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By Proposition 2.1, we find that for arbitrary node i,
the expected distance between the projected vector and its
own community center is naturally smaller than that from
other communities. Specifically, when k 
= k′, the expecta-
tion of δi,k′ shares a common term (i.e. dNkbkk) compared
with the case when k = k′. More importantly, these two
expectations have a difference of term dNkb

2
kk + dNk′b2k′,k′ ,

which is not only determined by community k (i.e., Ci) but
also by community k′. This explains why clustering perfor-
mance could be poor when community sizes are unbalanced
or the network has sparse connections. Furthermore, we find
that the dimension d plays an important role in (1). It en-
larges the gap between δi,k′s, which gives us better chances
to cluster nodes correctly. However, our numerical exper-
iments suggest that a larger projection dimension d also
leads to greater variability for the projected positions. Then,
whether the gap increase in the mean due to the projection
dimension can be offset by the increased variability becomes
a critical issue. This inspires the following proposition.

Proposition 2.2. Suppose the assumptions in Proposi-
tion 2.1 holds. We then have

var(δi,k′) =

⎧⎪⎪⎨⎪⎪⎩
dN2

k b
2
kk + d2Nkbkk + o

(
d2nθn + dn2θ2n

)
for k′ = k,

dN2
k b

2
kk + d2Nkbkk + o

(
d2nθn + dn2θ2n

)
for k′ 
= k.

By Proposition 2.2, we find that the variability of the
projected vectors increases towards infinity as n → ∞ or
d → ∞. A closer look reveals that its leading term is of
order O(d2nθn + dn2θ2n) under previous assumptions. This
means that the standard deviation of the projected vector
is approximately O(nθn

√
d + d

√
nθn). Recall that the ex-

pected distance gap is of order O(dnθ2n), which can domi-
nate the standard deviation when d and n are large. As a
consequence, as long as computational resources support it,
the projection dimension d should be as large as possible.
This is an interesting phenomenon to be numerically demon-
strated in the next section. With the help of the previous
two propositions, we are then able to establish the following
strong consistency results for the community separability
result.

Theorem 2.1. (Strong Separability) Suppose assump-
tions in Proposition 2.1 hold. Then, we have P (E) ≥
1− 2 exp

(
−Cmin

{
nθn, dθ

2
n

}
+ logK + logN

)
, where C is

some positive constant.

In order to achieve the strong consistency of the pro-
posed algorithm, we need P (E) → 1. Through Theorem 2.1,
we can easily find that the driving factor for P (E) → 1 is
the term min{nθn, dθ2n}. Then it is of great interest to in-
vestigate nθn and dθ2n respectively. First, consider that d
is sufficiently large so that min{nθn, dθ2n} = nθn. One can
find that the separability of the projected vectors is limited
by the network itself and cannot be further improved by

increasing the projection dimension d. Specifically, we re-
quire nθn � logN to ensure P (E) → 1 as N → ∞. This
leads to the signal strength θn � logN/n (as assumed in as-
sumption (A2)), otherwise the proposed method can never
achieve strong consistency. Next, we turn to discuss the case
that min{nθn, dθ2n} = dθ2n. If the signal strength θn = O(1),
that is, it does not diminish as N → ∞. Then we only
need the projection dimension d � logN , which can be a
mild condition in practice. When the signal strength θn di-
minishes as N → ∞, to ensure strong consistency we need
d � logN/θ2n. We consider two special cases. First, sup-
pose that the signal strength is as weak as θn = logN/n.
Then we can verify that the projection dimension d should
satisfies d � n2/ logN . This can be computationally ex-
pensive when the network size N is large. Second, suppose
that the maximum tolerated projection dimension d satisfies
d = c0N for some positive constant c0. Then we can verify
that the smallest signal strength to ensure strong consis-
tency should be θn �

√
logN/N . This is a stronger as-

sumption compared with the well known strong consistency
results for SBM, that is, θn ≥ c logN/N for some constant
c > 0 [35, 33]. These two cases imply that when the network
becomes sparse, the projected dimension d should be large.
This is the price paid for introducing additional noise. In
next section we verify our theoretical findings by conduct-
ing a number of numerical studies.

3. NUMERICAL STUDIES

3.1 Simulation studies

In this subsection, we conduct a number of simulation
studies to evaluate the finite sample performance of our pro-
posed random projection method. We set the connectivity
probability matrix as B = q1K1�

K +(p− q)IK , where p and
q denote the connecting probability between two nodes be-
longing to the same community and different communities,
respectively. This is the standard setting of an SBM with
four parameters studied by [31]. Various specification com-
binations of (N,K, n, d) are studied. For each specification,
we randomly repeat the experiment for T = 100 times. To
evaluate the performance of our proposed method, we con-
sider two clustering performance metrics. The first one is
the mis-clustered rate (MCR), which is defined as

MCR(Ĉ, C) =
∑N

i=1 I(Ĉi 
= Ci)

N
.

Here C = {C1, .., CN} are the ground truth labels and Ĉ =

{Ĉ1, ..., ĈN} are the predicted labels under permutations.
As one can see, the smaller the MCR value, the better the
clustering result is. The MCR metric is widely used in many
community detection studies under SBM, see for example
[31, 1, 9]. The second one is the adjusted rand index (ARI),
which is a well known metric for assessing the clustering
performance [18]. The ARI metric takes value in [−1, 1] and
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Figure 1. The left two panels, from the top to the bottom, show the MCR and ARI change as the community number K varies
from 10 to 90 with a fixed community size n = 100, respectively. The right two panels, from the top to the bottom, show the
MCR and ARI change as the community size n varies from 100 to 900 with a fixed community number K = 10, respectively.

the closer that ARI value to 1, the better the clustering
result is. We remark that the ARI can be well defined when
the K is not equal to the true cluster number.

We investigate the parameter effects (i.e., K, n and d) of
the proposed method in the first two studies. Subsequently,
we compare the proposed algorithm with three existing com-
munity detection methods and show its computational ad-
vance in the third study. Finally, we provide an eigenvalue
ratio criterion to select K in the fourth study.

3.2 Effect of community number K and
community size n

In our first study, we set p = 0.5, q = 0.05 and fix d = 100.
We consider two situations: (i) fix community size n = 100
and let K vary from 10 to 90; (ii) fix community number
K = 10 and let community size n vary from 100 to 900.
The detailed results are given in Figure 1. By the left two
panels of Figure 1, we find that the clustering performances
become worse and worse as the community number K grows
for fixed d and n. By the right two panels, we find that
the clustering performance become better and better as the
community size n grows when we fix the community size K.
These results match the claims in Theorem 2.1.

3.3 Effect of projection dimension d

Our second study focuses on the choice of random project
dimension d. To this end, we consider the cases that net-
works are dense and sparse, respectively. In the first case,

we consider a dense network with connecting probability
p = 0.2, q = 0.01. We choose the random projection di-
mension dN = (logN)2, which satisfies dN � logN . In the
second case, we consider a sparse network with connect-
ing probability pN = logN

√
logN/N and qN = logN/N ,

which satisfies θn �
√
logN/N . As a consequence, the con-

necting probability diminishes as N increases for the sparse
network case. Then we choose the random projection dimen-
sion dN = 0.1N . For both two cases, we fix the community
number K = 5 and let the network size N vary from 1000 to
10000. The detailed results are shown in Figure 2. Similar
pattern can be observed in Figure 2, the clustering perfor-
mances in both cases imply strong consistency as N → ∞.
Furthermore, the choice of dN in case one and the choice of
θn in case two match the claims and discussions in Theo-
rem 2.1.

3.4 Comparison with existing methods

Our third study concerns about the comparison ex-
periments with several existing methods. Specifically, we
consider the Newman-Girvan modularity method [26], the
method of latent position cluster model [10] and the spec-
tral cluster method [23]. The Newman-Girvan modular-
ity method (NG) is implemented by the function clus-
ter edge betweenness in R package igraph1. The latent po-
sition cluster model (LPCM) is implemented via R pack-

1https://cran.r-project.org/web/packages/igraph/index.html.
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Figure 2. The left panel shows the MCR changes of two cases as network size N varies from 1000 to 10000 with fixed
community number K = 5; The right panel shows the ARI changes of two cases as network size N varies from 1000 to 10000

with fixed community number K = 5.

age latentnet2, which is provided by [10]. We consider the
Euclidean distance in a five dimensional latent space and
set the burnin = 20,000. Moreover, the spectral clustering
(SC) method is implemented by the R package RSpectra3,
which is designed for large-scale eigenvalue decomposition.
As for the network settings, we set p = 0.5, q = 0.2, fix the
number of community K = 3, and let the community size
n vary from 10 to 1000. For the proposed random projec-
tion method, we fix d = 200 for experiments with K = 2
and d = 300 for experiments with K = 5. The cluster-
ing performances are evaluated by the mean mis-clustered
rate (MCR), adjusted rand index (ARI) and CPU time (in
seconds). Note that the NG method does not take a pre-
specified clustering number, therefore the cluster number
K might be over-estimated (or under-estimated). Thus we
omit the MCR value for the NG method since it is not well
defined in this case. We further omit the results that need
CPU time more that 600 seconds.

According to the results in Table 1, we can draw the fol-
lowing conclusions. First, almost all the methods have better
clustering accuracy when community size n diverges with
a fixed community number K. The only exceptional case
occurs for the Newman-Girvan modularity method when
K = 5. This is because the NG method tends to over-
estimate the cluster number and thus introducing extra clus-
tering instability. Second, compared to other methods, the
proposed RP method is obviously more computationally ef-
ficient with comparable clustering accuracy. This advantage
increases as the network size becomes larger. For instance,
when K = 5 and n = 500, the RP method consumes 0.2 sec-
onds while SC method consumes 23.5 seconds, which is 100
times larger than the RP methods. Moreover, both NG and
LPCM methods are not able to produce the result within
600 seconds under this circumstance.

2https://sites.stat.washington.edu/raftery/Research/latentnet.html.
3https://cran.r-project.org/web/packages/RSpectra/vignettes/
introduction.html.

3.5 Selection of community number K

For the last simulation study, we try to evaluate the em-
pirical performance of an intuitive and simple method for
estimating the community number K. There exists rich lit-
erature for estimating community number K; see, for ex-
ample, [15], [6], [19] [21], [12]. In addition to these works,
we apply a simple method of the maximum eigenvalue ra-
tio criterion. Recall that probability matrix P is of rank
K under the SBM setting; we should expect matrix E =
X�A�AX/(Nd) ∈ R

d(K < d � N) to have a K large top
eigenvalue, while the rest are comparatively small. Specif-
ically, let λ̂1 ≥ λ̂1 · · · ≥ λ̂d ≥ 0 be the eigenvalues of ma-
trix E. Thus, if we define an eigenvalue ratio criterion as
wk = λ̂k/λ̂k+1 for 1 ≤ k ≤ d − 1, we should expect wk to
reach its maximum at k = K. As a result, we choose the
estimated community number K̂ as K̂ = argmaxk wk. We
set p = 0.2, q = 0.01 and n = N/K = 1000. To evaluate
the numerical performance of this maximum eigenvalue ra-
tio criterion, we set K = 5, 10, 20 and let d vary from 10
to 100 to investigate the effective dimension d. The results
are summarized in Table 2, and Figure 3 gives a visualized
illustration of the maximum eigenvalue ratio criterion.

3.6 Real data examples

In this subsection, we consider two real-world network
datasets to illustrate the accuracy and computational effi-
ciency of our method. The first is the political blog network
collected by [2]. The network consists of 1,490 blogs about
US politics where the edges refer to web links. All blogs are
labeled with 0 for liberal and 1 for conservative. This leads
to two ground truth communities. However, straightforward
community detection leads to poor clustering performance
due to the imbalance and sparsity of the network. To this
end, we only use the largest connected subnetwork, which
contains 1,222 nodes with community sizes 586 and 636 for
liberal and conservative, respectively. We applied our ran-
dom projection method and the classic spectral clustering
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Table 1. Comparisons of four community detection methods. The reported CPU time results are multiplied by 10 and those
more than 600 seconds are represented by ′−′.

RP NG LPCM SC
K n MCR ARI Time MCR ARI Time MCR ARI Time MCR ARI Time

2

10 0.303 0.188 0.005 − 0.354 0.020 0.290 0.353 119.6 0.390 0.091 0.007
20 0.075 0.716 0.007 − 0.566 0.324 0.020 0.920 339.1 0.040 0.845 0.010
50 0.017 0.934 0.023 − 0.941 25.64 0.004 0.984 2303 0.006 0.975 0.021
100 0.004 0.984 0.044 − 0.998 872.7 − − − 0 1 0.110
200 0.002 0.994 0.132 − − − − − − 0 1 0.635
500 0.001 0.997 0.908 − − − − − − 0 1 9.528

5

10 0.584 0.081 0.009 − 0.129 0.706 0.540 0.173 2022.0 0.600 0.083 0.011
20 0.469 0.231 0.022 − 0.079 15.03 − − − 0.390 0.845 0.033
50 0.047 0.887 0.069 − 0.065 1356 − − − 0.011 0.975 0.210
100 0.011 0.972 0.192 − − − − − − 0.005 0.996 1.288
200 0.002 0.994 0.387 − − − − − − 0.001 0.999 10.96
500 0.001 0.998 2.210 − − − − − − 0 1 235.1

Figure 3. The left panel shows the eigenvalue of matrix E = X�A�AX/(Nd) (of one replicate) in descending order, and the
red vertical line shows the true value of K. The right panel shows the eigenvalue ratio of matrix E, and the red vertical line

shows the true value of K.

Table 2. Accuracy of the estimation of K based on the
maximum eigenvalue ratio criterion under different (K, d)

specification combinations when fixing n = 1000.

K
d

5 10 20 50 75 100

3 10% 54% 96% 100% 100% 100%
5 - 2% 88% 100% 100% 100%
10 - - 2% 100% 100% 100%
20 - - - 18% 94% 96%

method to these network data. Figure 4 shows the cluster-
ing results of 200 nodes with in-degrees no less than 30. We
find that the performance of the random projection method
is comparable with that of the classic spectral clustering
method but with lower computation time. Specifically, the
spectral clustering method requires 0.5616 s to complete the
task, while the random projection method (with d = 50)

only takes 0.2695 s to achieve the same clustering accuracy.
The second real-world network dataset is the Sina Weibo

network data. The dataset is collected from Sina Weibo
(www.weibo.com), which is arguably the largest Twitter-
type social media platform in China [13]. After the basic
data cleaning procedure, we keep N = 1,153 nodes with in-
degrees larger than 30. The number of edges is M = 68,109.
We then apply our random projection method to this net-
work with d = 100. The eigenvalue ratio criterion suggests
K = 6 as the number of communities. The clustering re-
sults can be found in the left panel of Figure 5. The within-
community density is n−1

1

∑
i,j aijI(Ĉi = Ĉj) = 0.1529,

and the between-community density is n−1
2

∑
i,j aijI(Ĉi 
=

Ĉj) = 0.01891, where n1 =
∑

k Nk(Nk − 1) and n2 =
N(N − 1)−

∑
k Nk(Nk − 1).

To explore the information behind the community detec-
tion result, we further illustrate the clustering result with
several nodal covariates. Specifically, the dataset contains
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Figure 4. Clustering results of the top 200 nodes with in-degrees larger than 30 from the political blogs dataset via (b)
random projection (d = 100) and (c) spectral clustering compared with (a) ground truth.

Figure 5. Clustering results of the Sina Weibo dataset via the
random projection method with K = 6. Different colors

represent different communities, and point sizes represent the
degree of nodes.

five covariates of the Weibo users. These covariates are bi-
follower count, status count, follower count, friend count and
favorite count. We calculate the mean value of each covari-
ate within all six communities, as shown in the radar plot in
Figure 6. The distributions of covariates are quite different
across different communities. This reveals that our commu-
nity detection result is informative and helpful for further
explorations. Furthermore, this implies that the covariate
information may further help community detection, and we
discuss it as a future study topic in the next section.

4. CONCLUSIONS

In this paper, we propose a simple random projection
method for large-scale network community detection. The
basic idea is to generate a number of random directions in an
N -dimensional Euclidean space. Each row of the adjacency
matrix is then projected onto these directions. Therefore,
their positions in a low-dimensional projected space can be

Figure 6. Radar plot of the mean value of each attribute
within all K = 6 communities. The scale of each attribute is

normalized to [0, 1] by the maximum and minimum.

computed. Subsequently, k-means can be applied to these
random projections to determine the community structure.
Furthermore, we adopt a simple eigenvalue ratio criterion on
the random projections so that the community number can
be determined automatically. Our proposed method has the
following advantages. First, it is simple, feasible and com-
putationally cheap for large-scale network data. Second, our
method preserves privacy with the help of random projec-
tion. We do not need to actually obtain the adjacency ma-
trix A once the random projections are calculated. Third,
our random projection method is naturally suitable for par-
allel computing, which makes it more flexible to deal with
large-scale network data or widely distributed stored net-
work data.
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To conclude this work, we will discuss several interesting
directions for future study. First, the statistical properties
of our proposed method are studied under standard SBM.
As an algorithm-based method, it will be of great inter-
est to study its theoretical properties under other network
structures, including degree-corrected SBM and latent space
model. Second, the random projection we used in this work
is a standard normal random matrix. How the covariance
matrix influences the result remains unknown. Furthermore,
we can use a random projection matrix with other distribu-
tions. For instance, when we use the Bernoulli variables to
form a projection matrix, the random projection becomes a
subsampling result. This may unify all these methods under
the random projection framework. Finally, our method is
naturally suited for parallel computing, and will be of great
interest to develop a corresponding method for parallel or
distributed community detection methods.

APPENDIX A. APPENDIX SECTION

A.1 Proof of Proposition 2.1

Define A(k) = N−1
k

∑
Cj=k Aj , where A�

i = (ai1, ..., aiN )
denotes the i-th row of adjacency matrix A. Define Ωi,k′ =
(Ai−A(k′))(Ai−A(k′))

� Note that Zi = X�Ai, we then have

δi,k′ = ‖Zi − α̂k′‖2 = tr(X�Ωi,k′X) =
∑d

s=1 X
�
s Ωi,k′Xs.

Then we have

E(δi,k′) = E

(
d∑

s=1

X�
s Ωi,k′Xs

)

=

d∑
s=1

E

{
E

(
X�

s Ωi,k′Xs

∣∣∣∣A)} = dE{tr(Ωi,k′)}

Then it suffices to calculate E{tr(Ωi,k′)}, we will consider
two cases as k′ = k and k′ 
= k, respectively.

Case 1: k′ = k

Under this case, we know that i ∈ {j : Cj = k′}, thus we
have

tr(Ωi,k′) =

N∑
t=1

⎛⎝ait −
1

Nk

∑
j:Cj=k

ajt

⎞⎠2

=
1

N2
k

N∑
t=1

⎧⎨⎩ ∑
j:Cj=k,j �=i

(ait − ajt)

⎫⎬⎭
2

=
1

N2
k

N∑
t=1

⎧⎨⎩ ∑
j:Cj=k,j �=i

(ait − ajt)
2

+
∑

j,r:Cj=k,Cr=k
j �=r,j �=i,r �=i

(ait − aitart − aitajt + artajt)

⎫⎪⎪⎬⎪⎪⎭

It can be carefully verified that E(ait−ajt)
2 = 2bkl(1− bkl)

when Ct = l. Similarly, we have E(ait − aitart − aitajt +
artajt) = bkl(1− bkl) when Ct = l. As a result, we have

E[tr(Ωi,k′)] =
Nk − 1

Nk

K∑
l=1

Nlbkl(1− bkl)

= Nkbkk(1− bkk) +O

⎛⎝∑
l �=k

Nlbkl

⎞⎠(2)

Case 2: k′ 
= k

Under this case, we know that i /∈ {j : Cj = k′}, thus we
have

tr(Ωi,k′) =

N∑
t=1

⎛⎝ait −
1

Nk′

∑
j:Cj=k

ajt

⎞⎠2

=
1

N2
k′

N∑
t=1

⎧⎨⎩ ∑
j:Cj=k′

(ait − ajt)

⎫⎬⎭
2

=
1

N2
k′

N∑
t=1

⎧⎨⎩ ∑
j:Cj=k′

(ait − ajt)
2

+
∑

j,r:j �=r
Cj=k′,Cr=k′

(ait − aitart − aitajt + artajt)

⎫⎪⎪⎬⎪⎪⎭
We can calculate that E(ait−ajt)

2 = E(ait−2aitajt+ajt) =
bkl(1 − bk′l) + bk′l(1 − bkl) when Ct = l. Similarly, we have
E(ait−aitart−aitajt+artajt) = bkl(1−bk′l)

2+b2k′l(1−bkl)
when Ct = l. Then we have

E[tr(Ωi,k′)]

=
1

N2
k′

N∑
t=1

⎧⎨⎩ ∑
j:Cj=k′

E(ait − ajt)
2

+
∑

j,r:j �=r
Cj=k′,Cr=k′

(ait − aitart − aitajt + artajt)

⎫⎪⎪⎬⎪⎪⎭
=

1

N2
k′

K∑
l=1

∑
Ct=l

⎧⎨⎩ ∑
j:Cj=k′

E(ait − ajt)
2

+
∑

j,r:j �=r
Cj=k′,Cr=k′

(ait − aitart − aitajt + artajt)

⎫⎪⎪⎬⎪⎪⎭
=

K∑
l=1

∑
Ct=l

{
1

Nk′
[bkl(1− bk′l) + bk′l(1− bkl)]
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+
Nk′ − 1

Nk′
[bkl(1− bk′l)

2 + b2k′l(1− bkl)]

}
=

K∑
l=1

{
Nl

Nk′
[bkl(1− bk′l) + bk′l(1− bkl)]

+
Nk′ − 1

Nk′
Nl[bkl(1− bk′l)

2 + b2k′l(1− bkl)]

}
=

K∑
l=1

{
Nl[bkl(1− bk′l)

2 + b2k′l(1− bkl)]
}

+

K∑
l=1

{
Nl

Nk′
bk′l(1− bk′l)

}

= Nkbkk +Nk′b2k′,k′ +O

⎛⎝∑
l �=k

Nlbkl

⎞⎠(3)

Furthermore, we can calculate that the difference between
E(δi,k′)s for i ∈ {j : Cj = k′} and i /∈ {j : Cj = k′} is
Nkb

2
kk +Nk′b2k′,k′ +O

(∑
l �=k Nlb

2
kl

)
. This finishes the proof.

A.2 Proof of Proposition 2.2

Recall that δi,k′ = ‖Zi − α̂k′‖2 = tr(X�Ωi,k′X) =∑d
s=1 X

�
s Ωi,k′Xs. Conditional on A, we can verify that

X�
s Ωi,k′Xs ∼ tr(Ωi,k′)χ2(1) for s = 1, 2, ..., d. Note that

X1, ..., Xd are independent, we have
∑d

s=1 X
�
s Ωi,k′Xs ∼

tr(Ωi,k′)χ2(d). Then we have

var(δi,k′) = var

(
d∑

s=1

X�
s Ωi,k′Xs

)

= E

{
var

(
d∑

s=1

X�
s Ωi,k′Xs

∣∣∣∣A
)}

+ var

{
E

(
d∑

s=1

X�
s Ωi,k′Xs

∣∣∣∣A
)}

= 2dE{tr2(Ωi,k′)}+ d2 var{tr(Ωi,k′)}

Then it suffices to calculate E{tr2(Ωi,k′)} and
var{tr(Ωi,k′)}. We first consider E{tr2(Ωi,k′)}.

tr2(Ωi,k′) =

⎧⎪⎨⎪⎩
N∑
t=1

⎛⎝ait −N−1
k′

∑
j:Cj=k′

ajt

⎞⎠2
⎫⎪⎬⎪⎭

2

=

N∑
t=1

⎛⎝ait −N−1
k′

∑
j:Cj=k′

ajt

⎞⎠4

+

N∑
s=1

∑
t �=s

⎛⎝ait −N−1
k′

∑
j:Cj=k′

ajt

⎞⎠2⎛⎝ais −N−1
k′

∑
j:Cj=k′

ajs

⎞⎠2

(4)

We then discuss the above two parts respectively.

Case 1: k′ = k

Under this case, we know that i ∈ {j : Cj = k′}, then we
have

E

⎛⎝ait −N−1
k

∑
j:Cj=k

ajt

⎞⎠4

=
1

N4
k

{(Nk − 1)Δ1t + 4(Nk − 1)(Nk − 2)Δ2t

+ 3(Nk − 1)(Nk − 2)Δ3t + 6(Nk − 1)(Nk − 2)(Nk − 3)Δ4t

+ (Nk − 1)(Nk − 2)(Nk − 3)(Nk − 4)Δ5t} ,

where Δ1t = E(ait − ajt)
4,Δ2t = E{(ait − ajt)

3(ait −
art)},Δ3t = E{(ait − ajt)

2(ait − art)
2},Δ4t = E{(ait −

ajt)
2(ait−art)(ait−amt)},Δ5t = E{(ait−ajt)(ait−art)(ait−

amt)(ait−aot)}. It can be calculated that Δ1t = 2bkl(1−bkl),
Δ2t = bkl(1− bkl), Δ3t = bkl(1− bkl)

2 + b2kl(1− bkl), Δ4t =
bkl(1−bkl)

3+b3kl(1−bkl) and Δ5t = bkl(1−bkl)
4+b4kl(1−bkl)

when Ct = l. Combine the results above, we have

E

⎛⎝ait −N−1
k

∑
j:Cj=k

ajt

⎞⎠4

= bkl(1− bkl)
4 + b4kl(1− bkl) +O

(
bkl
Nk

)
= bkl +O

(
b2kl +

bkl
Nk

)
Then we have

N∑
t=1

E

⎛⎝ait −N−1
k

∑
j:Cj=k

ajt

⎞⎠4

= Nkbkk +O(Nkb
2
kk + bkk +

∑
l �=k

Nlbkl)

On the other hand, the second term in equation (4) is the
summation of (ait −N−1

k

∑
j:Cj=k ajt)

2, whose expectation

has been studied in (2) for Ci = k = k′. Recall that E(ait −
N−1

k

∑
j:Cj=k ajt)

2 = [(Nk−1)/Nk]bkl(1− bkl) when Ct = l.
We then can calculate that

E

⎧⎪⎨⎪⎩
N∑
t=1

∑
t �=s

⎛⎝ait −
∑

j:Cj=k

ajt
Nk

⎞⎠2⎛⎝ais −
∑

j:Cj=k

ajs
Nk

⎞⎠2
⎫⎪⎬⎪⎭

=

⎧⎪⎨⎪⎩
N∑
t=1

E

⎛⎝ait −N−1
k

∑
j:Cj=k

ajt

⎞⎠2
⎫⎪⎬⎪⎭

2

−
N∑
t=1

⎧⎪⎨⎪⎩E

⎛⎝ait −N−1
k

∑
j:Cj=k

ajt

⎞⎠2
⎫⎪⎬⎪⎭

2
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=

(
Nk − 1

Nk

)2
{

K∑
l=1

Nlbkl(1− bkl)

}2

−
(
Nk − 1

Nk

)2 K∑
l=1

Nlb
2
kl(1− bkl)

2

Combine all the results above, we have

E{tr2(Ωi,k′)} = E

⎧⎪⎨⎪⎩
N∑
t=1

⎛⎝ait −N−1
k

∑
Cj=k

ajt

⎞⎠2
⎫⎪⎬⎪⎭

2

=

N∑
t=1

E

⎛⎝ait −N−1
k

∑
j:Cj=k

ajt

⎞⎠4

+

N∑
t=1

∑
t �=s

E

⎛⎝ait −N−1
k

∑
j:Cj=k

ajt

⎞⎠2

× E

⎛⎝ais −N−1
k

∑
j:Cj=k

ajs

⎞⎠2

=

K∑
l=1

Nl[bkl +O(b2kl)] +

(
Nk − 1

Nk

)2
{

K∑
l=1

Nlbkl(1− bkl)

}2

−
(
Nk − 1

Nk

)2 K∑
l=1

Nlb
2
kl(1− bkl)

2

= N2
k b

2
kk +O

⎛⎝Nkbkk +
∑
l �=k

N2
l b

2
kl

⎞⎠
The variance can be calculated subsequently as

var{tr(Ωi,k′)} = E{tr2(Ωi,k′)} − E{tr(Ωi,k′)}2

=

N∑
t=1

E

⎛⎝ait −N−1
k

∑
j:Cj=k

ajt

⎞⎠4

−
N∑
t=1

⎧⎪⎨⎪⎩E

⎛⎝ait −N−1
k

∑
j:Cj=k

ajt

⎞⎠2
⎫⎪⎬⎪⎭

2

=

K∑
l=1

Nl[bkl +O(b2kl)]−
(
Nk − 1

Nk

)2 K∑
l=1

Nlb
2
kl(1− bkl)

2

= Nkbkk +O

⎛⎝Nkb
2
kk +

∑
l �=k

Nlbkl

⎞⎠
(5)

Case 2: k′ 
= k

Under this case, we know that i /∈ {j : Cj = k′}, then we

have

E

⎛⎝ait −N−1
k′

∑
j:Cj=k′

ajt

⎞⎠4

=
1

N4
k′

{Nk′Δ1t + 3Nk′(Nk′ − 1)Δ2t + 4Nk′(Nk′ − 1)Δ3t

+ 6Nk′(Nk′ − 1)(Nk′ − 2)Δ4t

+Nk′(Nk′ − 1)(Nk′ − 2)(Nk′ − 3)Δ5t} ,

where Δ1t,Δ2t, ...,Δ5t are defined same as the case for k′ =
k. It can be calculated that Δ1t = bkl(1−bk′l)+bk′l(1−bkl),
Δ2t = bkl(1 − bk′l)

2 + b2k′l(1 − bkl), Δ3t = bkl(1 − bk′l)
2 +

b2k′l(1 − bkl), Δ4t = bkl(1 − bk′l)
3 + b3k′l(1 − bkl) and Δ5t =

bkl(1− bk′l)
4 + b4k′l(1− bkl). Combine the results above, we

have

E

⎛⎝Ait −N−1
k′

∑
Cj=k′

Ajt

⎞⎠4

=
1

N4
k′

{Nk′Δ1t + 3Nk′(Nk′ − 1)Δ2t + 4Nk′(Nk′ − 1)Δ3t

+ 6Nk′(Nk′ − 1)(Nk′ − 2)Δ4t

+Nk′(Nk′ − 1)(Nk′ − 2)(Nk′ − 3)Δ5t}

= bkl(1− bk′l)
4 + b4k′l(1− bkl) +O

(
bkl
Nk

)
= bkl +O

(
b4k′l +

bkl
Nk′

)
Then we have

N∑
t=1

E

⎛⎝ait −N−1
k′

∑
j:Cj=k′

ajt

⎞⎠4

= Nkbkk +O

⎛⎝Nk′b4k′,k′ + bkk +
∑
l �=k

Nlbkl

⎞⎠
Similarly, according to (3) Appendix A.1 we have E(ait −
N−1

k′
∑

j:Cj=k′ ajt)
2 =

{
Nl[bkl(1− bk′l)

2 + b2k′l(1− bkl)]
}
+

O(bk′l) when Ct = l. We then can calculate that

E

⎧⎪⎨⎪⎩
N∑
t=1

∑
s �=t

⎛⎝ait −
∑

j:Cj=k′

ajt
Nk′

⎞⎠2⎛⎝ais −
∑

j:Cj=k′

ajs
Nk′

⎞⎠2
⎫⎪⎬⎪⎭

=

⎧⎨⎩
N∑
t=1

E

⎛⎝ait −N−1
k′

∑
j:Cj=k′

ajt

⎞⎠⎫⎬⎭
2

−
N∑
t=1

⎧⎪⎨⎪⎩E

⎛⎝ait −N−1
k′

∑
j:Cj=k′

ajt

⎞⎠2
⎫⎪⎬⎪⎭

2
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=

{
K∑
l=1

{
Nl[bkl(1− bk′l)

2 + b2k′l(1− bkl)] +O(bk′l)
}}2

−
K∑
l=1

Nl[bkl(1− bk′l)
2 + b2k′l(1− bkl)]

2 +O

⎛⎝∑
l �=k′

Nlbk′l

⎞⎠
Combine all the results above, we have

E{tr2(Ωi,k′)} = E

⎧⎪⎨⎪⎩
N∑
t=1

⎛⎝ait −N−1
k′

∑
j:Cj=k′

ajt

⎞⎠2
⎫⎪⎬⎪⎭

2

=

N∑
t=1

E

⎛⎝ait −N−1
k′

∑
j:Cj=k′

ajt

⎞⎠4

+
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t=1

∑
s �=t

E

⎛⎝ait−
∑

j:Cj=k′

ajt
Nk′

⎞⎠2

E

⎛⎝ais−
∑

j:Cj=k′

ajs
Nk′

⎞⎠2

= N2
k b

2
kk +O

⎛⎝Nkbkk +

K∑
l �=k

N2
l b

2
kl

⎞⎠
The variance can be calculated subsequently as

var{tr(Ωi,k′)} = E{tr2(Ωi,k′)} − E{tr(Ωi,k′)}2

=

N∑
t=1

E

⎛⎝ait −N−1
k′

∑
j:Cj=k′

ajt

⎞⎠4

−
N∑
t=1

⎧⎪⎨⎪⎩E

⎛⎝ait −N−1
k′

∑
j:Cj=k′

ajt

⎞⎠2
⎫⎪⎬⎪⎭

2

= Nkbkk −
K∑
l=1

Nl[bkl(1− bk′l)
2 + b2k′l(1− bkl)]

2

+O(Nk′b4k′,k′ + bkk +
∑
l �=k

Nlbkl)

= Nkbkk +O

(
K∑
l=1

Nlb
2
kl

)

A.3 Proof of Theorem 2.1

We now focus on deriving lower bound for P (E). Re-

call that δi,k = ‖Zi − α̂k‖2 =
∑d

s=1 X
�
s Ωi,kXs, where

Ωi,k = (Ai−N−1
k

∑
j:Cj=k Aj)(Ai−N−1

k

∑
j:Cj=k Aj)

�. De-

fine event E0(η) = {maxi,k:Ci=k |δi,k − E(δi,k)| ≤ η} and
E1(η) = {maxi,k:Ci �=k |δi,k − E(δi,k)| ≤ η}. Recall that the
difference between the expectations of δi,k′ (Ci = k) for
k′ = k and k′ 
= k is Nkb

2
kk +Nk′b2k′,k′ + O(

∑
l �=k Nlb

2
kl). If

we pick a sufficiently small η = (Nkb
2
kk +Nk′b2k′,k′)/2, then

(6) P (E) ≥ P{E0(η)∪ E1(η)} ≥ 1− P{Ec
0(η)} − P{Ec

1(η)},

For a given k ∈ {1, 2, ..,K}, we further define
E0(k, η) = {maxi:Ci=k |δi,k − E(δi,k)| ≤ η} and E1(k, η) =
{maxCi �=k |δi,k − E(δi,k)| ≤ η}. Then we have

P (Ec
0(η)) = P{∪K

k=1Ec
0(k, η)} ≤

K∑
k=1

P (Ec
0(k, η)),(7)

P (Ec
1(η)) = P{∪K

k=1Ec
1(k, η)} ≤

K∑
k=1

P (Ec
1(k, η)),(8)

Thus it suffices to show P{Ec
0(k, η)} and P{Ec

1(k, η)}, re-
spectively. We derive P{Ec

0(k, η)} first and P{Ec
1(k, η)} can

be obtained similarly.
Note that δi,k contains two parts of randomness, which

are from the adjacency matrix A and random projection
matrix X, respectively. We define the event A = {c1nθn ≤
| tr(Ωi,k)| ≤ c2nθn} and show the following two inequalities

P (Ac) ≤ 2 exp(−c3nθn),(9)

P
({∣∣∣δi,k − E(δi,k)

∣∣∣ > η
} ∣∣∣A,A) ≤ 2 exp

(
−c4dθ

2
n

)
,(10)

where c1, c2, c3 and c4 are some positive constants. Combine
the results in (9) and (10), we can derive that

P
(∣∣∣δi,k − E(δi,k)

∣∣∣ > η
)

= P
({∣∣∣δi,k − E(δi,k)

∣∣∣ > η
}
∩ A

)
+ P

({∣∣∣δi,k − E(δi,k)
∣∣∣ > η

}
∩ Ac

)
≤ 2 exp (−c3nθn) + 2 exp

(
−c4dθ

2
n

)
It yields,

P{Ec
0(k, η)} = P

(
max
Ci=k

|δi,k − E(δi,k)| > η

)
≤
∑
Ci=k

P (|δi,k − E(δi,k)| > η)

≤ 2Nk exp (−c3nθn) + 2Nk exp
(
−c4dθ

2
n

)
.(11)

In the following we derive (9) and (10) in the following two
parts and then state the result for P{Ec

0(k, η)}.
1. Derivation of (9)

Note that tr(Ωi,k) can be represented into independent

summations as tr(Ωi,k) =
∑N

t=1 Wt, where Wt = (ait −
N−1

k

∑
j:Cj=k ajt)

2 ≤ 1 for 1 ≤ t ≤ N are bounded and
independent with each others. Then by Bernstein’s inequal-
ity, we have

P {| tr(Ωi,k)− E[tr(Ωi,k)]| > ε}

≤ 2 exp

(
− ε2/2

var[tr(Ωi,k)] + ε/3

)
(12)

Recall that the leading term of E[tr(Ωi,k)] and var[tr(Ωi,k)]
are both Nkbkk by (3) and (5), which is of order O(nθn) by
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assumptions. By choosing appropriate ε of order O(nθn), we
know that there exists three positive constant c1, c2 and c3
such that

P
{
c1nθn ≤

∣∣∣ tr(Ωi,k)
∣∣∣ ≤ c2nθn

}
≥ 1− 2 exp (−c3nθn)(13)

Let A =
{
c1nθn ≤

∣∣∣ tr(Ωi,k)
∣∣∣ ≤ c2nθn

}
, then (13) leads to

(9).
2. Derivation of (10)

Conditional on A and adjacency matrix A, Ωi,k can
be rewritten into a spectral decomposition form as
Ωi,k = tr(Ωi,k)uiu

�
i , where ‖ui‖ = 1. Then we have

X�
s Ωi,kXs = tr(Ωi,k)(X

�
s ui)

2 ∼ tr(Ωi,k)χ
2(1). Let Ys =

(nθn)
−1 tr(Ωi,k)(X

�
s ui)

2 and then δi,k = nθn
∑d

s=1 Ys. We
can verify that

E(|Y l
s ||A, A) = {tr(Ωi,k)/(nθn)}l(2l − 1)!!

≤ 2{tr(Ωi,k)/(nθn)}2 (2c2)l−2
l!

Therefore, given A and A, by Bernstein’s inequality [34] we
have for any ε > 0

P

({∣∣∣ d∑
k=1

Ys − E

d∑
s=1

Ys

∣∣∣ > ε

nθn

})

≤ 2 exp

{
− ε2

2n2ε2n
∑d

s=1 var(Ys|A, A) + c2nθnε

}

≤ 2 exp

{
− ε2

4dn2θ2nc
2
2 + 2c2nθnε

}
Choose ε = η = d(Nkb

2
kk +Nk′b2k′,k′)/2, then there exists a

constant c4 such that

P
({∣∣∣δi,k − E(δi,k)

∣∣∣ > η
} ∣∣∣A,A) ≤ 2 exp

(
−c4dθ

2
n

)
As a result, we have

P (Ec
0(η)) ≤

K∑
k=1

P (Ec
0(k, η))

≤ 2N exp (−c3nθn) + 2N exp
(
−c4dθ

2
n

)
(14)

The calculation of P (Ec
1) is similar. Recall that the lead-

ing term of E[tr(Ωi,k)] and var[tr(Ωi,k)] are both Nk′bk′,k′

for Ci = k′ 
= k, which is of order O(nθn). Following the
same argument as Ci = k, we can show

P
(∣∣∣δi,k − E(δi,k)

∣∣∣ > η
)
≤ 2 exp (−c3nθn)+2 exp

(
−c4dθ

2
n

)
.

The details are omitted here due to the duplication. Then
we can verify that

P{Ec
1(k, η)} = P

(
max
i:Ci �=k

|δi,k − E(δi,k)| > η

)

≤
∑

i:Ci �=k

P (|δi,k − E(δi,k)| > η)

≤ 2(N −Nk) exp(−c3nθn) + 2(N −Nk) exp(−c4dθ
2
n)

(15)

As a result, we can derive

P (Ec
1(η)) ≤

K∑
k=1

P (Ec
1(k, η))

≤ 2(K − 1)N exp (−c3nθn) + 2(K − 1)N exp
(
−c4dθ

2
n

)(16)

Combine the results in inequality (14) and (16), then we
have

P (E) ≥ P{E0(η) ∪ E1(η)} ≥ 1− P{Ec
0(η)} − P{Ec

1(η)}
≥ 1− 2 exp

(
−Cmin

{
nθn, dθ

2
n

}
+ logK + logN

)
,

for some positive constant C. This completes the proof of
Theorem 1.
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