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Correlated Wishart matrices classification via
an expectation-maximization composite
likelihood-based algorithm

Zhou Lan

Positive-definite matrix-variate data is becoming popu-
lar in computer vision. The computer vision data descrip-
tors in the form of Region Covariance Descriptors (RCD)
are positive definite matrices, which extract the key fea-
tures of the images. The RCDs are extensively used in im-
age set classification. Some classification methods treating
RCDs as Wishart distributed random matrices are being
proposed. However, the majority of the current methods
preclude the potential correlation among the RCDs caused
by the so-called auxiliary information (e.g., subjects’ ages
and nose widths, etc). Modeling correlated Wishart matri-
ces is difficult since the joint density function of correlated
Wishart matrices is difficult to be obtained. In this paper, we
propose an Expectation-Maximization composite likelihood-
based algorithm of Wishart matrices to tackle this issue.
Given the numerical studies based on the synthetic data
and the real data (Chicago face data-set), our proposed al-
gorithm performs better than the alternative methods which
do not consider the correlation caused by the so-called aux-
iliary information.

AMS 2000 subject classifications: Primary62H10; sec-
ondary 62H30.
Keywords and phrases: Correlated Wishart Matri-
ces, Composite Likelihood, Computer Vision, Expectation–
maximization algorithm, Image Set Classification, Region
Covariance Descriptor.

1. INTRODUCTION

Positive definite matrix-variate data is a type of data in
which each variable is a positive definite matrix other than
a scalar or a vector. The type of data is involved in sev-
eral applications, e.g., computer vision [see 36]. The com-
puter vision data descriptor in the form of Region Covari-
ance Descriptors (RCD) are positive definite matrices [36].
Generally, the specification of the RCD can be given as
follows. Let I be an RGB color image. I is usually repre-
sented as a W ×H×3 array, where W and H are the width
and height of an image, respectively, and 3 is the number
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of color channels, i.e., red (R), green (G), and blue (B).
Let F be the W × H × D dimensional feature image ex-
tracted from I. That is, the (x,y,d) element of the array
F is F (x, y, d) = φd(x, y, I). The function φd() is a map-
ping function to extract intensity, color, gradient, filter re-
sponse, etc. at the voxel (x, y) of the image I. Let F (x, y)
be F (x, y) = [F (x, y, 1), ..., F (x, y,D)]T . The RCD of the
image I is1

CI =
1

WH − 1

W∑
x=1

H∑
y=1

(F (x, y)− μ)(F (x, y)− μ)T ,

where μ is the sample mean of all F (x, y). CI , a D × D
covariance matrix, is a positive definite matrix-based de-
scriptor of the image I.

Compared to the traditional vector-based descriptors,
many computer vision studies have found that the RCD is a
very useful quantity to describe the distinguishing features
of an image [e.g., 8], especially for the applications to im-
age set classification. This includes identifying objects [e.g.,
7], identifying textures [e.g., 12], and facial recognition [e.g.,
32]. Several classification methods are proposed by using the
RCDs of images as inputs. Huang et al. [20] uses the Log-
Euclidean metric to characterizing the similarities among
RCDs and thus the image sets can be classified based on the
Log-Euclidean distances. The most commonly used proba-
bility distribution of positive definite matrix-variate data is
the Wishart distribution [13, 8, 27, 25]. Therefore, many pre-
vailing model-based methods are proposed. For example, Hi-
dot and Saint-Jean [19] proposed a Wishart mixture model
relying on Expectation-Maximization algorithm. As an ex-
tension of the Wishart mixture model, the Wishart Bayesian
nonparametrics method proposed by Cherian et al. [8] pro-
vides a more flexible approach for image-set classification.

Although the current works enjoy good classification,
they may preclude the available auxiliary information. The
so-called auxiliary information is defined as the information
which is image-specific but not voxel-specific. Taking the
Chicago face data-set [29] as an example, besides the RGB
images of the subjects’ headshots, we also have rich image-
level information such as the subjects’ ages, nose widths, etc.

1In several studies, the covariance matrix is calculated within certain
areas of an image.
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Figure 1. The 3-D scatter plot shows the RCDs’ largest
eigenvalues varies dependent on age and nose width. The
Z-axis is for the largest eigenvalues; The X-axis and Y-axis
are for the normalized ages and normalized nose widths,

respectively. The points represent the observations. The fitted
surface is fitted by a polynomial regression model.

We find that the RCDs are correlated dependent on these
pieces of auxiliary information. For example, in Figure 1,
we observe the RCDs’ largest eigenvalues varies dependent
on age and nose width. Therefore, the RCDs are correlated
across the auxiliary information. Although the correlation
may or may not be explained scientifically, we conjecture
that modeling the variations of the RCDs across the aux-
iliary information may increase the model fitness. In light
of the scientific objective, the better-fitted model may also
produce more accurate classification results.

Therefore, a model which induces the correlation among
Wishart matrices with respect to the auxiliary information is
preferred. Modeling correlated Wishart matrices is difficult.
The most challenging component is, unlike Gaussian dis-
tributed variables which you can feasibly use a multivariate
normal distribution, the joint density function of correlated
Wishart matrices is challenging to be obtained [39, 5, 35].
A desirable but challenging approach is the so-called (spa-
tial) Wishart process [17, 26]. The model has a very ele-
gant construction, that is to induce dependence of Wishart
matrices via the latent Gaussian processes. Unfortunately,
this density function of the (spatial) Wishart process is not
analytically available under general conditions [39, 5, 35].
Fortunately, standing on the shoulders of the giants who
provided the prodigious results [23], we can obtain the ana-
lytic expression of the bivariate density function.

To mitigate this inference issue caused by the ana-
lytic form of the joint density function, we propose a
computationally-feasible composite likelihood-based infer-
ence equipped with an expectation-maximization (EM) al-
gorithm. We first propose a hierarchical model based on the

(spatial) Wishart process. Given our proposed hierarchical
model, we use the EM algorithm for model fitting. However,
due to the analytic form of the joint density function is not
available, both the E-step and M-step cannot be executed
in a standard way. Therefore, we replace the full likelihood
with the composite likelihood in the algorithm. The com-
posite likelihood is an inference function derived by mul-
tiplying a collection of component likelihood [28], which is
primarily to resolve the issue that the full likelihood is un-
available. Because the analytic density function of two corre-
lated Wishart matrices can be obtained [23], the composite
likelihood is in a pairwise setting, which is then derived by
multiplying a collection of possible pairs. The estimators
based on composite likelihood is asymptotically unbiased
[37], but the efficiency of the estimators is determined by
the likelihood-weights [31, 4, 3, 2]. Considering a trade-off
between parameter estimation and computational cost, we
further proposed a novel likelihood-weight function, enjoy-
ing accurate parameter estimation and fast computational
speed.

In light of our goal of classification, we use both the
simulated data and the real data to demonstrate that our
proposed method produces a more accurate classification
of positive definite matrices than the benchmark methods.
The simulated data are generated from the proposed model.
The real data is the Chicago face data [29]. The benchmark
methods include a wide range of methods, including Wishart
Bayesian nonparametrics (Wishart BNP) [8], Log-Euclidean
metric method [20], K-means, and Gaussian mixture model.
The numerical results show that our proposed method pro-
duces a more accurate classification of positive definite ma-
trices, demonstrating its compelling potential in image set
classification in the coming future.

In the rest of the paper, we first give our hierarchical
model in Section 2. The estimation method is provided in
Section 3. We provide simulation studies in Section 4, show-
ing that our algorithm performs better than the other bench-
mark methods. A real data application using the Chicago
face database [29] with the objective of race classification
is provided in Section 5. In Section 6, we conclude with a
discussion. The essential derivations and the codes written
in MATLAB for implementing our method are given in the
appendices.

2. MODEL

In this section, we illustrate our model construction step-
by-step. First, we give the basic model setup in Section 2.1.
The basic model describes how the correlation of positive
definite matrices across the auxiliary information is con-
structed. In Section 2.2, we further introduce the latent
variables which can be used for the purpose of classifica-
tion. Finally, in Section 2.3, we give a model summary and
introduce its relationship to the RCD-based image set clas-
sification.
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Our model is based on the the parameterized Wishart dis-
tribution. Note that the parameterized Wishart distribution
is slightly different from the Wishart distribution introduced
in the classic textbooks. The parameterized Wishart distri-
bution is constructed as follows. Gj independently follows
a mean-zero normal distribution with the covariance matrix
Σ, denoted as Gj

ind∼ N (0,Σ). W =
∑M

j=1 GjG
T
j /M fol-

lows a parameterized Wishart distribution with the mean
matrix Σ and the degrees of freedom M , denoted as
W ∼ Wp(Σ,M). The density function of W is given be-
low

(1) fW(w) =
|w|(M−p−1)/2e− tr(MΣ−1w)/2

2
Mp
2 |Σ/M |M/2Γp(

M
2 )

.

2.1 Basic model setup

Let At be a p × p positive definite matrix-random vari-
able following a parameterized Wishart distribution with
the mean matrix Σt and the degrees of freedom M , denoted
as

(2) At ∼ Wp(Σt,M).

At can be treated as the RCD of the image t. Our goal is
to build a model which induces the correlation between At

and As (t �= s). To achieve this goal, We decompose At

as At = LtUtL
T
t , where Lt is the lower Cholesky factor

of Σt such as Σt = LtL
T
t . Since Σt determines the mean

of At, we treat Ut as the terms inducing the correlation.
A more approachable interpretation of this decomposition
is that Σt is the mean term driving the mean and Ut is
the remaining term explaining the correlation among the
matrices [26]. Next, we give the details of constructing these
two terms.

A popular approach to construct the correlation among
Ut has been known as (spatial) Wishart process [17, 26].
The standard Wishart process is defined as follows. Let
Gt be a mean-zero Gaussian process with the covariance
as cov(Gt,Gs) = ρts × I, where ρts ∈ (0, 1) is the corre-
lation coefficient and I is an identity matrix. If we have
independent and identically distributed realizations of this
process, denoted as Gjt, where j is the index for realiza-
tions and t is the index for the Gaussian process, then
Ut =

∑M
j=1 GjtG

T
jt/M follows a so-called Wishart process,

denoted as {Ut}t∈T ∼ WP(M,ρts,I), where T is a set of
indices for images. The correlation ρts can be expressed as
a correlation function, i.e., ρts = K(||Xt − Xs||;φ), where
K(d;φ) is a correlation function (e.g., Matern, exponential)
of d, and φ is a vector of the function parameters. Let Xt be
a d× 1 vector representing the auxiliary information of the
image t (e.g., age, nose width, etc). The distance ||Xt−Xs||
is the Euclidean distance of the two images’ auxiliary infor-
mation.

We emphasize that this model construction has two im-
portant properties: (1) At preserves to follow Wp(Σt,M)

marginally; (2) At and As are correlated (t �= s) due to

the remaining terms. The property (1) can be validated by

giving the lemma below.

Lemma 2.1. Let Σ be a p × p positive definite matrix. L

is the lower Cholesky factor of Σ such as Σ = LLT . If

U ∼ Wp(I,M), then W = LULT ∼ Wp(Σ,M).

This lemma is borrowed from Proposition 8.1 of Eaton

[14, Chapter 8: The Wishart Distribution] with a proof, and

it can also be found in many other multivariate textbooks.

To validate the property (2), we can quantify the depen-

dence of the Wishart process by using the expected squared

Frobenius norm [26, Equation 3], expressed as

(3)
E||Ut −Us||2F = γ(M)(1− ρ2ts)

γ(M) =
2

M

(
p+ p2

)
,

where ||Ut−Us||2F is the squared Frobenius norm of the term

Ut −Us. The norm can also be treated as a variogram [10].

Given the variogram which measures Euclidean distance of

two positive definite matrices, it is more transparent to claim

that a larger correlation of the underlying Gaussian process

leads to a larger dependence of the random Wishart matri-

ces, and a larger value of M leads to a smaller local variation

of the random Wishart matrices.

2.2 Latent variable setup

In light of our scientific objective to classify the RCDs,

the mean matrix Σt is specified as a term dependent on

a latent group variable. It is specified as Σt|[Zt = k] ≡
Sk, where Zt ∈ {1, 2, ...,K} is the latent group index. The

latent group variable Zt independently follows a discrete

distribution such that Pr(Zt = k) = ωk, denoted as

(4) Zt
ind∼ Discrete([1, 2, ..,K], [ω1, ω2, ..., ωK ]).

The hyperparameters {Sk : k = 1, 2, ...,K} are the

known and given values describing the features of each group

(k ∈ {1, 2, ...,K}) in terms of positive definite matrices. The

hyperparameters {Sk : k = 1, 2, ...,K} can be obtained from

the training data and/or the experienced values. Because the

hyperparameters {Sk : k = 1, 2, ...,K} are known and thus

the images are classified in a supervised manner, we refer

the process of identifying which of a set of categories an im-

age belongs to as classification. The number of components

K is also given and fixed. Based on this hierarchical model

setup, Zt can be used as a group indicator to classify the

image t to a group k ∈ {1, 2, ...,K}.
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2.3 Model summary and the RCD-based
image set classification

To this end, our proposed hierarchical model framework
is summarized as

(5)

Basic Level:

At = LtUtL
T
t Σt = LtL

T
t

{Ut}t∈T ∼ WP(M,ρts,I) ρts = K(||Xt −Xs||;φ)

Latent Level:

Σt|[Zt = k] ≡ Sk

Zt
ind∼ Discrete([1, 2, ..,K], [ω1, ω2, ..., ωK ]).

The above illustration gives a classification model for the
correlated positive definite matrices, which may be still ab-
stract to the practitioners. Next, we elaborate our proposed
model by giving its relationship to the RCD-based image
set classification. The image set classification is an impor-
tant research field in computer vision. The objective is to
classify the pictures into different topics [e.g., 8]. We use the
Chicago face database [29] as an illustration example. The
data-set provides high-resolution, standardized headshots of
male and female faces of different races between the ages of
17-65, as well as the subjects’ auxiliary information (e.g.,
age, nose width, etc). We have a scientific goal to classify
the pictures by their races, i.e., Black, Latino, and White,
which is one of the common scientific goals in computer vi-
sion studies [e.g., 30, 34, 15].

Let At be the RCD of the face picture t. First, the
remaining terms in the basic level capture the variations
caused by the auxiliary information. Because the auxiliary
information (e.g., age, nose width, etc) is usually irrelevant
to the races, our model specification indicates that the de-
pendence is separated from the effect of races which are
driven by the mean terms.

Given that the potential correlation among the random
positive definite matrices caused by the auxiliary informa-
tion has been captured by our proposed model, we can clas-
sify the data with fewer noises. We use k = {1, 2, 3} to
represent Black, Latino, and White, respectively. The hy-
perparameters {Sk : k = 1, 2, ...,K} are plug-in values that
can be obtained from the training data and/or the experi-
enced value, describing the typical features of a race in terms
of RCD. The maximum a posteriori estimator of Zt can be
used for the classification of images, resolving the scientific
objective.

3. ESTIMATION

In this section, we describe our approach to obtain the
parameter estimates of the unknowns. Our estimation ap-
proach is essentially a hybrid method composed of the com-
posite likelihood method and the EM algorithm.

3.1 Standard EM algorithm

Given Model (5), we first provide the EM Algorithm un-
der the standard situations. Rigorously, we use [a1, ...,at]
to represent the observed positive definite matrices of the
random matrices [A1, ...,At]. We give that a = [a1, ...,at]
and A = [A1, ...,At]. We also give Z = [Z1, ..., ZT ] to de-
note all latent group indexes. The parameters to be esti-
mated are ω = [ω1, ..., ωk, ..., ωK ] and Φ = [φT ,M ]T , where
[ω1, ..., ωk, ..., ωK ] are the group-weights, φ is a vector of the
parameters in the correlation function K(d;φ), and M is the
degrees of freedom. We give the notation θ = [M,ωT ,ΦT ]T

which contains all the parameters needed to be estimated.
The full log-likelihood is
(6)

�Full(θ|a,Z) = log

[
K∏

j1=1

...

K∏
jt=1

...

K∏
jT=1(

fA(a|Σ1 =Sj1 , ...,Σt =Sjt , ...,ΣT = SjT ,Φ)

×
T∏

t=1

ωjt

)I(Z1=j,,...,Zt=jt,...,ZT=jT )
]
,

where fA(a|Σ1 = Sj1 , ...,Σt = Sjt , ...,ΣT = SjT ,θ) is
the joint density function of A conditional on that [Z1 =
j1, ..., Zt = jt, ..., ZT = jT ].

Our goal is to obtain the maximum likelihood estimates
for θ. Therefore, we have to maximize the likelihood whose
the latent variables Z are integrated out. The log-likelihood
�(θ|a) whose latent variables are integrated out is expressed
as
(7)

�(θ|a) =
∫

...

∫
...

∫
log

[
K∏

j1=1

...

K∏
jt=1

...

K∏
jT=1(

fA(a|Σ1 = Sj1 , ...,Σt = Sjt , ...,ΣT = SjT ,Φ)

×
T∏

t=1

ωjt

)I(Z1=j,...,Zt=jt,...,ZT=jT )
]
dZ1...dZt...dZT ,

The hurdle caused by the unobserved latent variables
Z can be easily overcome through the famous EM algo-
rithm. The iterative scheme of the algorithm is given as
follows. If we have the current parameter θ(r), the like-
lihood is �Full(θ

(r)|a,Z). We first compute the expected
value of the likelihood function with respect to the cur-
rent conditional distribution of Z given the data a and the
current parameter estimates θ(r), denoted as Q(θ|θ(r)) =
EZ|A,θ(r)�Full(θ|a,Z). We call this step as E-step since we

take the expectation. Next we maximize the term Q(θ|θ(r))
with respect to θ to obtain the next estimates θ(r+1). This
step is called M-step because we maximize the function. We
iteratively repeat the two steps until convergence. Finally,
θ̂ is obtained as the maximum likelihood estimates for θ.
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3.2 Composite likelihood-based inference

The standard EM algorithm has a bottleneck which
is caused by the joint density function fA(a|Σ1 =
Sj1 , ...,Σt = Sjt , ...,ΣT = SjT ,Φ). Given several reports
[39, 5, 35], an analytic expression of the joint density
function is not available under general conditions. How-
ever, standing on the shoulders of the giants who pro-
vided the prodigious results [23], we are able to obtain
the bivariate density, i.e., the conditional density function
of [At,As] given [Zt, Zs], denoted as fAt,As(at,as|Σt =
Sjt ,Σs = Sjs ,Φ). The details in obtaining the density
function are summarized in Appendix A. The expression
of fAt,As(at,as|Σt = Sjt ,Σs = Sjs ,Φ) is written as

(8)
fAt,As(at,as|Σt = Sjt ,Σs = Sjs ,Φ)

= 0F1

(
1

2
M ;

1

4

(
Mρts
1− ρ2ts

)2

Q−1
js as(Q

T
js)

−1Q−1
jt

at(Q
T
jt)

−1

)

2−Mp

[
Γp(

1

2
M)

]−2

|S−1
jt

at|
1
2
(M−p−1)|S−1

js as|
1
2
(M−p−1)

(
1− ρ2ts
M2

)− pM
2

exp

(
−1

2
tr

[
M

1

1− ρ2ts

(
S−1

js as + S−1
jt

at

)])

|S−1
jt |

p+1
2 |S−1

js |
p+1
2 ,

where 0F1(; ) is a hypergeometric function of matrix argu-
ment [See 23, Section 6] and Qjt is the lower Cholesky de-
composition factor of Sjt such as Sjt = QjtQ

T
jt
. The value

of this function 0F1(; ) can be numerically evaluated [24].
Here, we want to highlight two important proper-

ties about this density function: (1) when ρts = 0,
fAt,As(at,as|Σt = Sjt ,Σs = Sjs ,Φ) is the product
of the probability density functions of Wp(Sjt ,M) and
Wp(Sjs ,M) (see the density function of parameterized
Wishart distribution in Equation 1); (2) conversely, ρts = 1
leads to that fAt,As(at,as|Σt = Sjt ,Σs = Sjs ,Φ) is an
improper density function. The property (1) is consistent
with our basic model setup because ρts = 0 implies that
there is no dependence. The property (2) may be analogised
to the similar issue encountered in Gaussian process mod-
eling [40], that ρts = 1 leads to the improper multivariate
Gaussian density function.

Obtaining the expression of the bivariate joint density is
a milestone which allows us to proceed the next composite
likelihood-based inference. Composite likelihood is an
inference function derived by multiplying a collection of
component likelihood. For example, we denote A1, ...,AC

as a set of marginal or conditional events with associated
likelihoods Lc(θ;y) ∝ f(y ∈ Ac;θ), where f() is a density
function, y is the data, and θ is the parameters. Following
Lindsay [28], a composite likelihood is a weighted product

such as
∏C

c=1 Lc(θ;y)
pc , where {pc : k = 1, 2, ..., C}

are non-negative weights. Under the usual regularity
conditions, the composite likelihood-based inference can

provide asymptotically unbiased parameter estimates when
standard likelihood estimators are not available [37]. For
example, Padoan et al. [31] proposed a pairwise setting for
max-stable processes by using composite likelihood-based
inference, since only the analytically tractable form can be
obtained in their case.

We define the events Ac = {At,As} as the sets of
bivariate positive definite matrices taken over all T (T −
1)/2 distinct pairs t and s. Next we replace the full log-
likelihood �Full(θ|a,Z) with the composite log-likelihood
�Pair(θ|a,Z). The log composite likelihood �Pair(θ|a,Z) in
the pairwise setting is written as

(9) �Pair(θ|a,Z) =

T−1∑
t=1

T∑
s=t+1

pts�ts(θ|a,Z),

where �ts(θ|a,Z) = log
[ ∏K

jt=1

∏K
js=1

(
fAt,As(at,as|Σt =

Sjt ,Σs = Sjs ,Φ)× ωjtωjs

)I(Zt=jt,Zs=js)
]
and pts > 0 is its

likelihood-weight. We usually scale the likelihood-weights so
that

∑
t<s pts = 1.

The estimators obtained via composite likelihood-based
inference are asymptotically unbiased but not asymptoti-
cally efficient [37, 31]. A key to resolve this issue is the
choice of the likelihood-weights {pts} that minimize the to-
tal amount of variation of the asymptotic variance [18, Sec-
tion 2.3]. In theory, the weights of composite likelihood in-
ference are to increase the efficiency of parameter estima-
tion (i.e., asymptotic relative efficiency ARE). Intuitively,
it is to put more weights on the more correlated pairs is
the golden rule. There have been two prevailing methods
to specify the weights: Padoan et al. [31] proposed the 0/1
likelihood-weights where a threshold δ > 0 is introduced. If
||Xt−Xs|| > δ, then pts = 0, otherwise, pts = 1 (not scaled).
This method is computationally-feasible because many pairs
are excluded from computation. Bai et al. [3] and Bevilacqua
et al. [4] further propose adaptive weights which rely on the
analytic expression of the Fisher information of estimators.
The first one provides a computationally feasible method
but sacrifices efficiency. The latter method usually provides
the best efficiency by giving smooth weights, however, in
our case, it is non-trial to obtained since the close form of
the Fisher information cannot be easily obtained due to the
presence of hypergeometric function of matrix argument.

To combine the two ideas above, we propose a novel
smooth likelihood-weight function which is simple and
computationally-fast for the practitioners but produces rel-
atively efficient estimators. The proposed likelihood-weights
are pts ∝ exp(−||Xt − Xs||/λ) × uts. The variable uts ∈
{0, 1} is pre-specified: among all uts, we randomly select
�u× T (T − 1)/2� pairs which have uts = 1, where u ∈ (0, 1);
the rest pairs have uts = 0. This likelihood-weight function
has two tuning parameters. λ > 0 controls the decay rate of
the likelihood-weight. That is, a smaller λ leads to more ho-
mogeneous non-zero likelihood-weights (See Figure 2). More
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importantly, for any λ, the pairs of observations that are ir-
relevant apart in auxiliary information are smoothly down-
weighed, which is preferred as outlined in Bevilacqua et al.
[4]. u ∈ (0, 1) controls the computational cost and reduces
the pairs to be evaluated from T (T −1)/2 to u×T (T −1)/2.
In the numerical studies, we will investigate the roles of the
two tuning parameters on parameter estimation and classi-
fication accuracy.

3.3 Composite likelihood-based EM
algorithm

Combining all the results above, we give the final EM
composite likelihood-based algorithm, which is a hybrid
method composed of the EM algorithm and composite
likelihood-based inference. The key idea of this hybrid
method is to replace �Full(θ|a,Z) by �Pair(θ|a,Z) in the
algorithm. Thus, the step of conditional expectation is
with the posterior based on composite likelihood, that is
p(Z|A,θ(r)) ∝ �Pair(θ

(r)|a,Z)p(Z). The corresponding E-
step and M-step are described as follows: E-Step: In this
step, we aim to obtain EZ|A,θ(r)�Pair(θ|a,Z). It is

(10)
QPair(θ|θ(r)) = EZ|A,θ(r)�Pair(θ|a,Z)

= EZ|A,θ(r)

(
T−1∑
t=1

T∑
s=t+1

pts log

[
K∏

jt=1

K∏
js=1(

fAt,As(at,as|Σt =Sjt ,Σs =Sjs ,Φ)× ωjtωjs

)
I(Zt=jt,Zs=js)

])

= EZ|A,θ(r)

(
T−1∑
t=1

T∑
s=t+1

pts

K∑
jt=1

K∑
js=1

log

(
fAt,As(at,as|Σt = Sjt ,Σs = Sjs ,Φ)× ωjtωjs

)

I(Zt = jt, Zs = js)

)

=

T−1∑
t=1

T∑
s=t+1

pts

K∑
jt=1

K∑
js=1

log

(
fAt,As(at,as|Σt = Sjt ,Σs = Sjs ,Φ)× ωjtωjs

)
EZ|A,θ(r)I(Zt = jt, Zs = js).

This means that we only need to calculate T
(r)

(jt,jst,s )
=

EZ|A,θ(r)I(Zt = jt, Zs = js) and plug them in. The term

T
(r)

(jt,jst,s )
is explicitly expressed as

(11)

T
(r)

(jt,jst,s )
= EZ|A,θ(r)I(Zt = jt, Zs = js)

=
(
fAt,As(at,as|Σt = Sjt ,Σs = Sjs ,Φ

(r))ω
(r)
jt

ω
(r)
js

)pts
÷

K∑
jt=1

K∑
js=1

(
fAt,As(at,as|Σt = Sjt ,Σs = Sjs ,Φ

(r))ω
(r)
jt

ω
(r)
js

)pts

.

By plugging in T
(r)

(jt,jst,s )
, we have the updated

QPair(θ|θ(r)) expressed as

(12)

QPair(θ|θ(r)) = EZ|A,θ(r)�Pair(θ|a,Z)

=

T−1∑
t=1

T∑
s=t+1

pts log

[
K∏

jt=1

K∏
js=1(

fAt,As(at,as|Σt = Sjt ,Σs = Sjs ,Φ)× ωjtωjs

)T
(r)

(jt,jst,s )
]

M-Step: We obtain θ(r+1) via maximizing QPair(θ|θ(r))
with respect to θ. To be specific, ω and Φ can be parallelly
estimated. The estimate of the weight ω has an analytic
expression, expressed as

(13) ω
(r+1)
k =

∑T−1
t=1

∑T
s=t+1

∑K
jt=1 T

(r)

(jt,kt,s )∑T−1
t=1

∑T
s=t+1

∑K
jt=1

∑K
js=1 T

(r)

(jt,jst,s )

.

Φ(r+1) is obtained via maximizing the function

(14)

QPair(Φ|Φ(r)) =

T−1∑
t=1

T∑
s=t+1

pts log

[
K∏

jt=1

K∏
js=1(

fAt,As(at,as|Σt = Sjt ,Σs = Sjs ,Φ)

)T
(r)

(jt,jst,s )
]
,

with respect to Φ. The function QPair(Φ|Φ(r)) can be fea-
sibly maximized using the Quasi-Newton method [11].

We obtain the maximum likelihood estimate θ̂ until con-
vergence. The conditional expectation of I(Zt = k), denoted
as Gt,k, can be used as the classifier to show the probability
that the image t belongs to the group k, expressed as

(15)
Gt,k = EZ|A,θ̂I(Zt = k) =

∑T
s=1

∑K
js=1

(
f(at,as|Σt = Sk,Σs = Sjs , Φ̂)ω̂jt ω̂k

)pts

∑T
s=1

∑K
jt=1

∑K
js=1

(
f(at,as|Σt =Sjs ,Σs =Sjs , Φ̂)ω̂jt ω̂js

)pts .

We classify the observation t to the group kt =
maxk=1,2,...,K Gt,k.

The composite likelihood-based EM algorithm borrows
the ideas from the two popular statistical methods. We are
concerned about if our algorithm still enjoys the proper-
ties of the original methods. Fortunately, there have been
many relevant works [9, 16, 38, 6] endorsing our proposed
algorithm. The major concern is that whether the hybrid
method still enjoys the three key properties of standard EM
algorithm. As shown in detail by Gao and Song [16], it is
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easy to prove the three key properties which are (i) the as-
cent property that is �Pair(θ

(r+1)|a) > �Pair(θ
(r)|a), where

�Pair(θ|a) =
∫
�Pair(θ

(r+1)|a,Z)dZ, (ii) convergence to a
stationary point of the objective function, and (iii) conver-
gence rate depending on the curvature of the objective func-
tion. The MATLAB codes implementing this hybrid algorithm
are attached in the Appendix B.

4. SIMULATION STUDIES

In this section, we use synthetic data to study the per-
formance of our proposed algorithm. The synthetic data
are generated based on the full model (Model 5), where
the correlation function is the exponential function, i.e.,
K(d;φ) = exp(−d/φ). The range parameter φ > 0 controls
the correlation, and a larger φ leads to a larger correla-
tion. In each replication, T = 50 positive definite matrices
are generated for classification. The remaining terms Ut are
generated by setting the degrees of freedom as M = 5 and
setting range parameter as φ = 1. The latent variable Zt

are sampled equally from {1, 2, 3}, indicating K = 3 and
ω1 = ω2 = ω3 = 1

3 . In each replication, the mean Sk

is independently sampled from W3(I, 3). The covariate is
Xt = [Xt1, ..., Xtd, ..., Xt,10], and Xtd is sampled from a uni-
form distribution ranging from 0 to 1. Subsequently, all the
entries in the distance matrix measuring all the pairs of the
subjects are also scaled to [0, 1]. For each comparison, 100
replications are generated.

To have a fair comparison, we do not use the true means
{Sk : k = 1, 2, ...,K} as the input of our algorithm. Instead,
we give the trained mean as followed. For each given Sk,
we generate 10 positive definite matrices according to our
model, and then we calculate their sample mean. The sample
means, denoted as {S̃k : k = 1, 2, ...,K}, are the algorithm
inputs. Using {S̃k : k = 1, 2, ...,K} is also better mimicking
the real world.

Huang et al. [20] uses the Log-Euclidean metric for im-
age set classification. The Log-Euclidean metric has already
been used as a metric measuring the distance between pos-
itive definite matrices in many other studies [e.g., 1]. In our
study, we implement this method in a simplified way, that is
to give the group of the image t via finding a k which mini-
mizes the function || logAt− log S̃k||F . Since both our algo-
rithm and the method of Log-Euclidean metric utilize the in-
formation from the training data, i.e., {S̃k : k = 1, 2, ...,K},
the method of Log-Euclidean metric can be a benchmark
method to tell the improvement caused by modeling the
correlation caused by the auxiliary information.

We also compare our proposal to the other two com-
pelling Wishart distribution-based methods. The first one
is the Wishart mixture model relying on Expectation-
Maximization algorithm, proposed by Hidot and Saint-Jean
[19]. To make the Wishart mixture model comparable to
our proposal, we fixed the mixture means as {S̃k : k =
1, 2, ...,K}. In this way, the Wishart mixture model can be
considered as a our proposal by setting ρts = 0 for all t < s.

Table 1. The proposed method (EM Hybrid) and the
benchmark methods are summarized. The properties of these
methods are number of groups (fixed v.s. flexible), training
data request (yes v.s. no), model based (yes v.s. no), and

information used (whole matrix v.s. eigenvalues).

Method Number
of Groups

Training Data
Request

Model
Based

Information
Used

EM Hybrid Fixed Yes Yes Whole
Wishart Mixture Fixed Yes Yes Whole
Wishart BNP Flexible No Yes Whole
Log-Euclidean Fixed Yes No Whole

K-means Fixed No No Eigenvalues
Gaussian Mixture Fixed No Yes Eigenvalues

Thus, it can be used to validate if the additive Wishart pro-
cess makes improvements. A compelling benchmark method
is the Wishart BNP proposed by Cherian et al. [8], which is a
Dirichlet process of Wishart distribution. The computation
of the Wishart BNP is based on Gibbs sampling. Similar
to our algorithm, the Wishart BNP was also proposed with
the application to the RCD-based image set classification.
The Wishart BNP does not require training data and pro-
duces classification with an undetermined number of groups.
Therefore, we further report the number of groups identified
by the algorithm of the Wishart BNP.

The methods we give above utilize the whole matrix. Al-
ternatively, we may only use the eigenvalues of an RCD. By
fixing the number of groups as K = 3, we can classify the
images by the K-means and the Gaussian mixture model,
treating the eigenvalues as the multivariate responses. The
properties of our proposed method (EM Hybrid) and the
benchmark methods are summarized in Table 1, helping us
learn the key differences among the methods.

We inspect the performance of our algorithm in two as-
pects: (a) the classification accuracy and (b) the role of the
tuning parameters λ and u in the likelihood-weight function.
To explore the roles of the tuning parameters, we give the
combinations of λ ∈ {5× 2−5, 5× 2−4, 5× 2−3, 5× 2−2, 5×
2−1, 5 × 20}, and u ∈ {0.2, 0.4, 0.6, 0.8}. The exponential
component in the weight function is displayed in Figure 2.

The methods to be compared include the supervised
methods (i.e., EM Hybrid and Log-Euclidean Metric), the
semi-supervised methods (i.e., Gaussian mixture Model and
K-means), and the unsupervised method (i.e., Wishart
BNP), To make the classification accuracy measured under
the same system, we use the commonly-used Rand index as
metric to describe the classification accuracy [21]. The Rand
index [33] is a value ranging from 0 to 1, and a larger value
indicates that the classification is more accurate.

First, we compare our algorithm to the other benchmark
methods, in terms of classification accuracy. The side-by-
side boxplots of the Rand indices are displayed in Figure 3.
From the results, our algorithm with different settings of
tuning parameters produces a more accurate classification
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Figure 2. The exponential component in the weight function
is displayed.

result than the others. We also note that the method using
only eigenvalues both produce worse results, compared to
the ones which utilize the whole matrix. The performance
of the Log-Euclidean metric method shows that the inclu-
sion of the variations caused by the auxiliary information is
important. As we stated before, the Wishart BNP is a com-
pelling method. In our simulation study, the performance
of our algorithm is better than the Wishart BNP. We col-
lect the posterior mode of the clusters in the Wishart BNP.
Over all the replications, the averaged posterior mode is
5.74. Among the 50 replications, only 15 replications have
the posterior mode estimated as 3. This indicates that the
Wishart BNP can be over the true clusters. The Wishart
mixture model does not perform as good as our proposal,
indicating the importance of inducing correlation of RCDs.

A nice feature of our algorithm is that our algorithm is
robust to the tuning parameters, in terms of classification
accuracy. Given the demo script provided in Appendix B,
the typical computational time of u = 0.1 and T = 50 is
1 minute. However, we still recommend to give a larger u
if the large computational cost allows in a certain problem,
because we observe that a larger u leads to larger Rand
indices in Figure 4 where the Rand indices are aggregated
over all λ ∈ {5×2−5, 5×2−4, 5×2−3, 5×2−2, 5×2−1, 5×20}.
Also, we recommend authors to carry out some pilot studies
to choose the optimal λ.

Furthermore, we want to investigate the role of the tun-
ing parameters on parameter estimation. The parameter es-
timations are evaluated by the squared error. The squared
error are defined as follows:

• Group-Weights: 1
K

∑K
k=1(ω̂k − ωk)

2

• Range Parameter: (φ̂− φ)2

• Degrees of Freedom: (M̂ −M)2,

where the terms without hats are the true values of the
parameters and the terms with hats are the estimates. We
use dot plots to show the relationship between the squared
errors and the log-likelihood (Figure 5). Generally, we ob-
serve a negative association between the squared errors and
the log-likelihood. In light of the negative association, we
recommend reporting the parameter estimation whose log-
likelihood value is largest.

5. APPLICATION TO THE CHICAGO FACE
DATABASE

We use the Chicago face database [29] as the motivat-
ing data-set. The data-set is open to the public. It can
be requested from the website https://chicagofaces.org. The
data-set has headshots of the subjects of different races, to-
gether with the subjects’ auxiliary information (e.g., age,
nose width, etc). Our goal is to classify the images by their
races (i.e., Black, Latino, and White), through using their
RCDs. Race classification is one of the common scientific
goals in computer vision studies [e.g., 30, 34, 15]. The true
races of the subjects are known in our motivating data-set,
thus we can evaluate the classification accuracy by compar-
ing the inferred race classification and the true race classifi-
cation.

The RCDs are calculated as follows. First we only use
the voxels which cover the skin to calculate the RCD.
This step can be simply implemented by the MATLAB

codes provided by Jain [22]. The feature vector is then
defined as F (v) = [F (v,R), F (v,G), F (v,B)]T , where
F (v,R), F (v,G), F (v,B) are the magnitudes of red, green,
and blue at the voxel v. We further normalized the mag-
nitudes by dividing the image’s sample standard error of
the magnitudes at the blue channel, denoted as F̃ (v) =
F (v)/σB = [F (v,R), F (v,G), F (v,B)]T /σB . Finally, the
RCD is computed by taking the sample covariance of all
F̃ (v).

Note that the original RCD paper [36] only introduced a
big picture, and the scheme to generate the RCD varies un-
der different scenarios. In short, the scheme to generate the
RCDs relies on the relevant domain knowledge. Our paper
primarily focuses on introducing the proposed methodology.
Thus we simply use the scheme described above, and the
scheme is considerably useful in our classification problem.
However, other appropriate schemes [e.g., 34, 8] to generate
the RCDs can also be used, if the features extracted are use-
ful in the specific classification problem. More importantly,
the other schemes also have no hurdle to be used in our
algorithm.

After obtaining the RCDs of the subjects, we select
the training data to obtain the trained means {S̃k : k =
1, 2, ...,K}. For each race (i.e., Black, Latino, and White),
we randomly select one-fifth of the subjects of each race and
calculate their sample mean treated as the trained mean
{S̃k : k = 1, 2, ...,K}. We use all the available numerical
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Figure 3. The side-by-side boxplots of the Rand indices are displayed. The title of each subplot gives the value of u. Under a
certain u, the x-axis is for the values of λ and the y-axis is for the Rand index. The Rand indices produced by a method of all
replications are visualized by a boxplot. For each method, the medians of the boxplots are connected by a dashed line. The
legends on the right side give the colors for each method. To clarify, the benchmark methods do not rely on λ and u but are

only visualized at the locations to compare with the corresponding Rand indices produced by our algorithm.

Figure 4. The side-by-side boxplots of the Rand indices are
displayed. The x-axis is for the values of u and the y-axis is

for the Rand index. Given a u, the rand indices are
aggregated over all λ ∈ {5× 2−5, 5× 2−4, 5× 2−3,

5× 2−2, 5× 2−1, 5× 20}. The aggregated Rand indices are
visualized by a boxplot. The medians of the boxplots are

connected by a dashed line.

auxiliary information to constructXt. Each covariate is nor-
malized, and the entries in the distance matrix measuring
all the pairs of the subjects are also scaled to [0, 1].

We continue to use the methods listed in Table 1. We also
continue to give the combinations of λ ∈ {5×2−5, 5×2−4, 5×
2−3, 5 × 2−2, 5 × 2−1, 5 × 20}, and u ∈ {0.2, 0.4, 0.6, 0.8}.
The Rand index is used to measure the classification accu-
racy too. The classification accuracy in terms of the Rand
index is visualized in Figure 6. The real data result is con-
sistent with what we have had in the simulation study (Sec-
tion 4). First, our algorithm still holds the first place among
all the methods. Also, the classification result is robust to
the tuning parameters in the likelihood-weight function. In
the real data analysis, the model-based methods (EM Hyr-
bid, Wishart BNP, Wishart Mixture Model, and Gaussian
Mixture Model) are better than the non-model-based meth-
ods (Log-Euclidean Metric and K-means). This may imply
the importance of including statistical uncertainties in mod-
eling real data. The Gaussian mixture model performs rela-
tively well. This may be caused by that the eigenvalues pro-
vide distinguishing information in this classification prob-
lem.
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Figure 5. We use scatter plot to show the relationship between the squared errors and the log-likelihood. The title of each
subplot gives the value u. The x-axis is for the values of squared errors and the y-axis is for the values of log-likelihood. The

legends on the right side give the colors for each parameter.

In light of the suggestion provided in Section 4, the pa-
rameter estimation are given as follows. The estimation of
the weights are ω̂1 = 0.3333, ω̂2 = 0.3334, and ω̂3 = 0.3333;
the parameter estimation for the range parameter is φ̂ =
0.5647; the parameter estimation for the degrees of free-
dom is M̂ = 39.1730. The associated tuning parameters are
u = 0.4 and λ = 5 × 2−5, whose log-likelihood which is the
largest among all settings.

6. CONCLUSION AND FUTURE
DIRECTIONS

In this paper, we propose a novel EM composite
likelihood-based algorithm of Wishart matrices to classify
the Wishart matrices which are correlated caused by the
auxiliary information. The methodological details are explic-
itly given in the paper. The algorithm also performs better
than the other methods in terms of image set classification.
In summary, our paper has significant contributions in both
the methodological development of matrix-variate analysis
and the application of computer vision.

The proposed hierarchical model is set up in a relatively
simplified way. More complicated features can be added

given specific computer vision problems. For example, the
mean of the positive definite matrices may also be deter-
mined by the subject-level covariates, but not necessarily
be plug-in values. However, the added complicated features
shall make the statistical inference more challenging. Sta-
tistical inference tools such as variational Bayesian methods
and Markov chain Monte Carlo methods are encouraged to
be implemented in the future.
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APPENDIX A. DERIVATIONS OF THE
BIVARIATE DENSITY

This scheme to obtain the joint density borrows the idea
from [35] in which the joint density for complex Wishart
matrices is derived. First, we give the joint density func-
tion of [Ut,Us] specified in our model (Model 5), denoted
as fUt,Us [ut,us]. The function fUt,Us(ut,us) can be decom-
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Figure 6. The side-by-side dot-plots of the Rand indices are displayed. The title of each subplot gives the value of u. Under a
certain u, the x-axis is for the values of λ and the y-axis is for the Rand index. The Rand index produced by a method is

visualized by a dot. For each method, the dots are connected by a dashed line. The legends on the right side give the colors
for each method. To clarify, the benchmark methods do not rely on λ and u but are only visualized at the locations to

compare with the corresponding Rand index produced by our algorithm.

posed as

(16) fUt,Us(ut,us) = fUt|Us
(ut|us)× fUs(us),

where fUt|Us
(ut|us) is the conditional density function of

[Ut|Us] and fUs(us) is the marginal density of Us.
In Section 2, Gjt|Gjs follows a normal distribution such

that Gjt|Gjs ∼ N (ρtsGjs,
√

1− ρ2tsI). Given James et al.
[23, Equation 67], we can give the explicit expression of
fUt|Us

(ut|us)
2, which is expressed as

(17)
fUt|Us(ut|us) =

exp

[
−1

2
tr

(
Mρ2ts
1− ρ2ts

us

)]
× 0F1

(
1

2
M ;

1

4

(
Mρts
1− ρ2ts

)2

usut

)

× 1

2Mp/2 × Γp(
1
2
M)× | 1−ρ2ts

M
I|M/2

×

exp

[
−1

2
tr

(
M

1− ρ2ts
ut

)]
× |ut|

1
2
(M−p−1),

2A similar derivation has been done in Smith and Garth [35] for com-
plex correlated Wishart matrices.

where is 0F1(; ) a hypergeometric function of matrix argu-

ment. Then the joint density function fUt,Us(ut,us) is

(18)
fUt,Us (ut,us) = fUt|Us

(ut|us)× fUs(us)

= exp

[
−1

2
tr

(
Mρ2ts
1− ρ2ts

us

)]
× 0F1

(
1

2
M ;

1

4

(
Mρts

1− ρ2ts

)2

usut

)

× 1

2Mp/2 × Γp(
1
2
M)× | 1−ρ2ts

M
I|M/2

×

exp

[
−1

2
tr

(
M

1− ρ2ts
ut

)]
× |ut|

1
2
(M−p−1)

×|us|
1
2
(M−p−1) × exp

(
−1

2
tr (usM)

)

×
(
2Mp/2 × |I/M |M/2 × Γp

(
1

2
M

))−1

= 0F1

(
1

2
M ;

1

4

(
Mρts

1− ρ2ts
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usut

)
× 2−Mp ×

[
Γp(

1

2
M)

]−2

× |ut|
1
2
(M−p−1) × |us|

1
2
(M−p−1)

×
(
1− ρ2ts
M2

)−pM/2

× exp

(
−1

2
tr

[
M

1

1− ρ2ts
(us + ut)

])
.
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Next, we want to derive the expression of the joint den-
sity function fAt,As(at,as|Σt = Sjt ,Σs = Sjs ,Φ). This
can be done via variable change. We have the relation-
ship that Ut = Q−1

jt
At(Q

T
jt
)−1. The Jacobian is |J | =

|Σ−1
t |(p+1)/2×|Σ−1

s |(p+1)/2, given Proposition 5.11 of Eaton
[14, Chapter 5: Matrix Factorizations and Jacobians]. There-
fore, the expression of fAt,As(at,as|Σt = Sjt ,Σs = Sjs ,Φ)
is

(19)
fAt,As(at,as|Σt = Sjt ,Σs = Sjs ,Φ)

= 0F1

(
1

2
M ;

1

4

(
Mρts

1− ρ2ts

)2

Q−1
js

as(Q
T
js
)−1Q−1

jt
at(Q

T
jt
)−1

)

× 2−Mp ×
[
Γp(

1

2
M)

]−2

× |S−1
jt

at|
1
2
(M−p−1) × |S−1

js
as|

1
2
(M−p−1)

×
(
1− ρ2ts
M2

)− pM
2

× exp

(
−1

2
tr

[
M

1

1− ρ2ts

(
S−1
js

as + S−1
jt

at

)])

× |S−1
jt

|
p+1
2 × |S−1

js
|
p+1
2 ,

APPENDIX B. CODES

The MATLAB codes are in EM Hybrid Codes.zip. The
instructions of implementing the codes are provided
readme.txt. Some example scripts are also given.
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