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Learning conditional dependence graph for
concepts via matrix normal graphical model∗

Jizheng Lai and Jianxin Yin
†

Conditional dependence relationships for random vectors
are extensively studied and broadly applied. But it is not
very clear how to construct the dependence graph for un-
structured data like concept words or phrases in text cor-
pus, where the variables(concepts) are not jointly observed
with i.i.d. assumption. Using the global embedding meth-
ods like GloVe, we get the ‘structured’ representation vec-
tors for concepts. Then we assume that all the concept vec-
tors jointly follow a matrix normal distribution with sparse
precision matrices. With the observation of the word-word
co-occurrence matrix and the GloVe construction procedure,
we can test this assumption empirically. The asymptotic dis-
tribution for the test statistics is derived. Another advantage
of this matrix-normal distributional assumption is that the
linearly additive property in word analogy tasks is natural
and straightforward.

Different from knowledge graph methods, the condi-
tional dependence graph describes the conditional depen-
dence structure between concepts given all other concepts,
which means that the concepts(nodes) linked by edges can-
not be separated by other concepts. It represents an essen-
tial semantic relationship. There is no need to enumerate all
related pairs as head and tail elements of a triplet in knowl-
edge graph regime. And the relation type in this graph is
solely the conditional dependence between concepts.

A penalized matrix normal graphical model(MNGM) is
then employed to learn the conditional dependence graph
for both the concepts and the embedding ‘dimensions’. Since
the concept words are nodes in our graph with huge dimen-
sions, we employ the MDMC optimization method to speed
up the glasso algorithm. Also, the algorithm is adaptive to
incremental accumulation of new concepts in text corpus.
On the other hand, we propose a sentence granularity boot-
strap to get ‘independent’ repeats of samples to enhance the
penalized MNGM algorithm. We name the proposed method
as Matrix-GloVe.

In simulation studies, we check that the graph learned
by Matrix-GloVe is more suitable for Graph Convolutional
Networks(GCN) than a correlation graph, i.e. a graph de-
termined from the k-NN method. We employ the proposed
method in two scenarios from real data. The first scenario
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is concept graph learning for concepts in textbook corpus.
Under this scenario, two tasks are studied. One is comparing
the vectors output by GloVe and other word2vec methods,
i.e. CBOW and Skip-Gram, then the vectors are used by
penalized MNGM. Another task is link prediction among
the concepts. On both tasks, Matrix-GloVe achieves better.
In the second scenario, Matrix-GloVe is applied to a down-
stream method i.e. GCN. For node classification tasks on
the BBC and BBCSport datasets, both GCN with Matrix-
GloVe and GCN with Matrix-GloVe plus Deepwalk outper-
form GCN with k-NN.

AMS 2000 subject classifications: Primary 62F10; sec-
ondary 62F03.
Keywords and phrases: Concept graph, Conditional de-
pendence graph, Graph convolution network, Matrix normal
graphical model, Word embedding.

1. INTRODUCTION

Conditional dependence graph, also known as condi-
tional independence graph is a powerful tool for analyz-
ing the relationships among random variables([6], [10], [24],
[31], [34]). There, the data is usually assumed to be jointly
observed and i.i.d. sampled from a population. Distribu-
tional assumptions for matrix or tensor structure can par-
tially relieve the non-satisfaction of independent distribu-
tion assumption([17], [32]). But the conditional dependence
relationship is not well defined for concept words in text cor-
pus data, and there is no standard framework for learning
this dependency structure. However, concept-level relation-
ship mining is a heated topic in natural language process-
ing ([18], [19], [20], [21], [26]). One line of research uses the
co-occurrence and count numbers in context to infer the
relationships among concepts [19], while in [21], higher or-
der supervision of courses can help to infer the dependence
among concepts. In [19], a topic model based on an ad-
mixture of Poisson Markov Random Fields(APM) is built.
The dependence between words can be modeled via joint
Poisson MRF parameters, from a topic angle of view. In
the knowledge graph regime, the prerequisite relationship
among concepts is built up by different distances like video,
sentence, and Wikipedia reference distances [26]. On the
other hand, the word2vec representation for words in the
corpus which has semantic meaning in the embedding space
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([2], [13], [23]). Word2vec family of methods like Skip-Gram
and CBOW [23] try to find an embedding of words into a
vector space, such that the word similarity corresponds to
the vector similarity. A by-product and also a rather amaz-
ing result is that the additivity property holds under cer-
tain distributional assumptions for the word2vec vectors([2],
[13]).

GloVe [27] is a global embedding method from which
the obtained vectors are not only meaningful in a sense of
global matrix factorization but also can capture the features
through a sliding window in the corpus. However, the output
embedding vectors are not assumed to follow any distribu-
tion in their setting.

Given a p× q dimensional data matrix W as the output
of a word2vec or GloVe output, where the p rows represent
p concepts and q columns represent q dimensions in the em-
bedding vector space. Under a joint normal distribution as-
sumption, the matrix normal graphical model(abbreviated
as MNGM, [32]) is a useful tool to mine the relationship
for both rows and columns of the matrix. If one wants to
apply the graphical model directly to the data matrix, it’s
unreasonable to assume that the different dimensions in the
vector space are independent. So the matrix normal is a good
remedy to incorporate the dependence structure among the
dimensions in vector space into the model. We show that
there are four advantages of such an assumption on the em-
bedding vectors:

• With matrix normal distribution assumption, we can
learn the conditional dependence graph for the con-
cepts.

• The conditional means of concept vectors is linear in
other given concept vectors, which means that the lin-
early additive property is natural in this setting.

• To reduce space and time complexity, we can record
and incrementally update a sample covariance statistic
to carry out the algorithm.

• Under the distribution assumption of vectors, and com-
bining the observed word-word co-occurrence matrix, a
test can be constructed to test whether this assumption
holds or not.

A penalized matrix normal graphical model algorithm
can then be applied to these embedding vectors. We have
two main modifications here: the first one is that to han-
dle a huge dimension of the variables(concepts), we adopt
the MDMC(maximum determinant matrix completion) op-
timization method to speed up the underlying glasso algo-
rithm [11]. It is proven to be able to process hundreds of
thousands of variables in minutes [11]. The second one is
that, to get good power for the penalized MNGM, a certain
amount of repeated samples is helpful. So we develop a novel
‘bootstrap’ sampling method by permutating the sentences
within a paragraph before a GloVe model is applied to it.
Hence we repeat this procedure many times to get ‘inde-
pendent’ samples of data matrices W (b), b = 1, · · · , B. The

intuition behind this kind of ‘independent’ sample is that
sentences in a paragraph usually denote a similar meaning
around a certain topic, and the exchange of sentences will
not change the essential dependence among the concepts.

The Matrix-GloVe algorithm is specified for applying pe-
nalized MNGM on the embedding vectors output by GloVe
embeddings. We examine this algorithm through both sim-
ulation and real data analysis. The conditional dependence
graph result from Matrix-GloVe is itself of independent in-
terest and is desirable. Also, this graph can be applied to
downstream procedures. Particularly, in many application
scenarios, graphs are ubiquitous in describing real-world ob-
jects and their interactions. As a powerful tool for learning
on graph-structured data, Graph Neural Networks (GNNs)
have been widely employed for analytical tasks across var-
ious domains. However, GNNs are highly sensitive to the
quality of the given graph structures. And the provided
graph is inevitably incomplete and noisy. Recent research
suggests that unnoticeable, deliberate perturbation (aka.,
adversarial attacks) in graph structure can easily result in
wrong predictions for most GNNs ([8], [33], [35]). Thus,
a high-quality graph structure is often required for GNNs
to learn informative representations [22]. In the simulation
study, we check the network got from Matrix-GloVe per-
forms better than correlation-based networks.

In real applications, we analyze two scenarios, one is to
analyze the concepts graph for the key index words in a
randomly selected 10 textbooks corpus. We first check and
compare the behavior of Matrix-GloVe on the vector qual-
ity, i.e. compare whether the vectors output by GloVe is bet-
ter. Secondly, we study the link prediction accuracy among
concepts, using Matrix-GloVe and competing for supervised
methods like GloVe+SVM. The other scenario is the node
classification task on BBC and BBCSports datasets.

The paper is organized as follows. In Section 2, we briefly
review the GloVe and Matrix Normal Graphical Model,
make the distribution assumption on GloVe vectors, and
prove some properties under the assumption which can be
tested empirically. Then we propose our main algorithm
Matrix-GloVe, the algorithm’s incremental version, and also
a sentence granularity bootstrap method. In Section 3, we
apply Matrix-GloVe to the downstream algorithm Graph
Convolutional Networks(GCN) and check that the graph
learned by MNGM is more suitable for GCN through a sim-
ulation. In Section 4, we employ the proposed method in
two scenarios from real data and test the distribution as-
sumption empirically. Then we compare our algorithm with
competing methods. In Section 5, we give a quick summary
and reach the main conclusion of the paper.

2. MODELS AND METHODS

2.1 GloVe embedding

Global Vectors for Word Representation(GloVe) is a sta-
tistical model for learning word embeddings [27]. They be-
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lieve that the more appropriate optimization object of em-
bedding vectors for words is the co-occurrence probability
ratio between two different words, instead of the probability
of words themselves. Therefore, the GloVe model utilizing
the embedding vectors can express the co-occurrence prob-
ability ratio of different target words by:

F
(
(wi − wj)

T
w̃k

)
=

Pik

Pjk

where Pik means the conditional probability that word k
appears in the context of words/concepts i and it can be
estimated by Xik/Xi. Here Xij is the co-occurrence count
for words/concepts i and j in a prescribed sliding window,
while Xi is for word i’s. wi, wj and w̃k are target embedding
vectors.

They chose the exponential function for F , and finally
get the cost function:

(1) J =

V∑
i,j=1

f(Xij)(w
T
i wj + bi + bj − logXij)

2

where V is the size of the vocabulary, f is a weighting func-
tion (for simplicity, we choose f ≡ 1 in this paper), and
bi and bj can be treated as the estimation terms for logXi

and symmetric balancing term of word j, hence holds the
relation w�

i wj ≈ logXij . See in [27] for more details.
The model is trained only on the nonzero elements in a

word-word co-occurrence matrix, so it’s efficient. And it can
do well over a small corpus. But there’s no distributional
assumption and inference on the output embedding vectors
from GloVe. In this paper, we make a matrix normal distri-
bution assumption on the output embedding matrix, when
aligning all the embedding vectors of concepts.

2.2 Matrix normal graphical model

Assume the data Y as a matrix-valued random variable,
we say Y follows a matrix normal distribution, if Y has a
density function

p(Y |M,U, V ) = k(U, V ) exp(−tr{(Y −M)�(2)

U−1(Y −M)V −1/2}),

where k(U, V ) = (2π)−pq/2|U |−q/2|V |−p/2 is the normalizing
constant, M is the mean matrix, U is the row covariance
matrix and V is column covariance matrix. This definition
is equivalent to the definition via the Kronecker product,
specifically,

Y ∼ MNp,q(M ;U, V ) if and only if

vec(Y ) ∼ Npq(vec(M), V ⊗ U).

We denote the corresponding precision matrices as A =
U−1, B = V −1 for U and V , respectively. This model

assumes a particular decomposable covariance matrix for
vec(Y ) that is separable in the geostatistics context [7].

The following proposition shows that there is a graphical
model interpretation for the two precision matrices A and
B in the matrix normal model (2). See reference in [32].

Proposition 1. Assume that Y ∼ MNp,q(M ;U, V ). If we
partition the columns of Y as Y = (Y1, · · · , Yq), then it holds
for γ, μ ∈ Γ = {1, · · · , q} with γ �= μ that

Yγ Yμ | YΓ\{γ,μ} if and only if bγμ = 0,

where B = {bαβ}α,β∈Γ = V −1 is the column precision ma-
trix of the distribution; similarly, if we partition the rows
of Y as Y = (Y 1, · · · , Y p)T , then it holds for δ, η ∈ Δ =
{1, . . . , p} with δ �= η that

Y δ Y η | Y Δ\{δ,η} if and only if aδη = 0

where A = {aδη}δ,η∈Δ = U−1 is the row precision matrix of
the distribution.

We estimate the precision matrices A = U−1, B = V −1

in model (2) by a penalized likelihood estimation. To esti-
mate the A and B, one can minimize the following penalized
negative log-likelihood function

φ(A,B) = −q log(|A|)− p log(|B|)(3)

+
1

n

n∑
k=1

tr{AYkBY T
k }

+
∑
i �=j

pλij (aij) +
∑
i �=j

pρij (bij)

where pλij (·) is the penalty function for the element aij of A
with tuning parameter λij , while pρij (·) is the corresponding
penalty function for bij with tuning parameter ρij . Here we
use lasso penalty function | · |1 as pλij (·) and pρij (·). We
tune the penalty parameters λij and ρij by controlling the
output amount of edges on the graph at certain level. For
simplicity, we always subtract the mean from Y and assume
that M = 0.

2.3 Local test for distributional assumption

We now construct a test statistics to test the hypothesis:

H0 : the embedding vectors output by GloVe follow

matrix normal distribution MNp,q(0;U, V )

H1 : not H0

Under the above null hypothesis H0, we have a local dis-
tributional result for each embedding vector pair wi, wj of
words/concepts i and j. We have the following result.

Proposition 2. Suppose that the word vectors learning
from GloVe algorithm follow a matrix normal distribu-
tion(hence H0), then the joint distribution of vectors wi and
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wj for concept i and concept j is

N

(
0,

(
uiiV uijV
uijV ujjV

))

then w�
i wj follows a weighted sum of 2q independent χ2

distributed random variables ξk (k = 1, · · · , 2q) each with
degree of freedom 1:

λ1 (ξ1/α1 + ξ2/α2 + · · ·+ ξq/αq)

+λ2 (ξq+1/α1 + ξq+2/α2 + · · ·+ ξ2q/αq)

where λ1 = 4(uiiujj − u2
ij)/(uii − 2uij + ujj) and λ2 =

2(uij−√
uiiujj). And here αk (k = 1, · · · , q) are eigenvalues

of the inverse of covariance matrix V −1(= B).

Proof. From the matrix normal distribution, we have(
wi + wj

wi − wj

)
∼ N (0,Σ)

where

Σ =

(
(uii + 2uij + ujj)V (uii − ujj)V

(uii − ujj)V (uii − 2uij + ujj)V

)
.

Hence

w�
i wj =

1

4

(
(wi + wj)

�(wi + wj)

−(wi − wj)
�(wi − wj)

)
From the proposition 1c.3(ii) in [29], here we take, for some
R in the lemma,

A =

(
Iq 0
0 −Iq

)
= R−1�ΛR−1

and

B = Σ−1 = R−1�R−1

Denote X1 = wi + wj , X2 = wi − wj , X = (X�
1 , X�

2 )�,
then Y = R−1X ∼ N(0, I2q). Hence w�

i wj = 1
4X

�AX =
1
4Y

�ΛY , where the λi in the diagonal Λ is determined by
the equation det(A − λB) = 0 by the Lemma (1c.3(ii)) in
[29]. It is computed as

Σ−1 =

( uii−2uij+ujj

4(uiiujj−u2
ij)

V −1 − uii−ujj

4(uiiujj−u2
ij)

V −1

− uii−ujj

4(uiiujj−u2
ij)

V −1 uii+2uij+ujj

4(uiiujj−u2
ij)

V −1

)

Solve the equation det(A − λB) = 0 we got the solutions
as the weights for the independent χ2(1)’s. Here we observe
that the value of log(Xij) for normalized Xij (adjusted by
Xi and Xj) can be negative, so we choose the negative root
in the final second order equation. Hence the result.

Lemma (Proposition 1c.3(ii)in [29]). Let A and B be real
m ×m symmetric matrices of which B is positive definite.
Then there exists a matrix R such that A = R−1�ΛR−1

and B = R−1�R−1, where Λ is diagonal matrix. Let λ1 ≥
λ2 ≥ · · ·λm be roots of |A− λB| = 0. Then the ith diagonal
element of Λ is λi.

GloVe is designed to fit the value of log(Xij) from word-
word co-occurrence matrix X by learned representation vec-
tors. And for normalized Xij , fit log(Xij) with w�

i wj , so we
can test the distribution of log(Xij) to confirm the distribu-
tion hypothesis of word embeddings. For each pair (i, j) of
concepts, the level-α rejection region R of this test can be
written as:

R = {Xij : logXij ≥ (1− α)thquantile of the

weighted sum of χ2(1)s as in Proposition 2. }

In Section 4.3, we use Kolmogorov-Smirnov statistics to
test whether the distribution of log(Xij) is significantly
apart from the corresponding weighted sum of χ2 variables.

IfH0 is rejected, one can use some nonparametric method
like nonparanormal method([25]), where the Spearman’s or
Kendall’s statistics can be applied on the embedding matrix
so that the matrix normal graphical model is still applicable.
But limited to the space, this line of study is not further
explored in this paper.

2.4 Paragraph bootstrap

GloVe uses a context window to count the co-occurrence
of pair of words, that is to say, if two words are separated by
too many words (more than the size of the context window),
the co-occurrence of these two words won’t be counted. How-
ever, in a paragraph, two closely related words can have
a relatively long distance, especially when the context is
about some definition. A context window may not cover
both words simultaneously when sliding over them. Hence
we may lose the information of two related words.

Therefore, when we randomly shuffle the sentences in the
same paragraph, we may obtain different sets of embedding
vectors for concepts. This process is similar to bootstrap re-
sampling. Every concept has more than one observation on
the same dimensions. We get more ‘samples’ of concepts
without enlarging the size of the corpus. By doing so, we en-
hance the information on the relations between two words in
one paragraph in the embeddings, which can be very useful
for discovering the relationship between concepts. Changing
the order of sentences generally does not change the mean-
ing of the context, and it can be considered as a different
flow of expression. Hence we regard different samples gen-
erated in each bootstrap process as independent samples of
word embeddings, which follow matrix normal distribution.

Denote p as the number of concepts we are interested in,
q as the word embedding’s vector size, and n as the times
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we bootstrap the paragraph, i.e. the number of concept ma-
trices. We propose a method named Matrix-GloVe as algo-
rithm 1. Notice that every iteration can be run in parallel
to speed up the execution process.

Algorithm 1 Matrix GloVe

Input:
corpus;
Concepts C = {c1, c2, ..., cp}

Output:
Precision matrices A & B.

for iteration i = 1, 2, · · · , n do
Use GloVe to obtain the embeddings of concepts W (i) =

{w(i)
1 , w

(i)
2 , ..., w

(i)
p } from corpus;

Form the matrix of concepts Yi, whose jth row Yi,j· = w
(i)
j ;

Randomly reset the orders of sentences in every paragraph;
end for
Use Y = {Y1, ..., Yn} as input data of penalized MNGM to
estimate the precision matrix A & B.

2.5 Incremental updates for penalized
MNGM

The learning process of GloVe is based on an iterative
function of co-occurrence word pairs. So it is naturally in-
cremental. We just collect new co-occurrence word pairs in
new documents and use the iterative function to update
word embeddings on the old results. Therefore, we can eas-
ily obtain the incremental version of GloVe.

According to [32], to estimate A and B is to minimize the
penalized negative log-likelihood function (3), they propose
a iterative procedure to minimize this function, the second
step(step A) is:

Â(i+1)=argmin
A

⎧⎨
⎩− log(|A|) + tr

(
Ŝ
(i)
A A

)
+

∑
i �=j

pλ∗
ij
(aij)

⎫⎬
⎭

where Ŝ
(i)
A = 1/(nq)

∑n
k=1(Yk − Ȳ )B̂(i)(Yk − Ȳ )�, λ∗

ij =
λij/q, Yk means word embeddings from kth paragraph boot-
strap, Ȳ =

∑n
k=1 Yk.

[12] showed that the problem to maximize the penalized
log-likelihood

log detA− tr(SA)− ρ‖A‖1(4)

is equivalent to solve the dual problem:

min
β

{
1

2

∥∥∥U1/2
11 β − b

∥∥∥2 + ρ‖β‖1
}

(5)

for each column of U . Where U =

(
U11 u12

u�
12 u22

)
is the

estimate of A−1, S =

(
S11 s12
s�12 s22

)
, b = U

−1/2
11 s12, if β

solves (5), then u11 = U11β.

Thus, in step A:

Â(i+1) = argmin
A⎧⎨

⎩− log(|A|) + tr
(
Ŝ
(i)
A A

)
+
∑
i �=j

pλ∗
ij
(aij)

⎫⎬
⎭

(6)

where Ŝ
(i)
A = 1/(nq)

∑n
k=1(Yk − Ȳ )B̂(i)(Yk − Ȳ )�, λ∗

ij =
λij/q

We denote Yk =

(
Yk1

yk2

)
. yk2 is the new observation of

the new word.
Solving (4) is equivalent to solve the dual problem (5)

Ŝ
(i)
A =

(
S11 s12
s�12 s22

)
, A =

(
A11 a12
a�12 a22

)
, b = U

−1/2
11 s12, if

β solves (5), then u12 = U11β.
Based on this idea, we can fixed the old precision matrix

A11, and whenever comes a new individual (a new word),
we add a new column and a new row to matrix A, and
use (6) to update a12 and a22. So we obtain a incremen-
tal version of step A. Then we assumed precision matrix B
would not change much, so we fix old precision matrix B,
and obtain a incremental version of MNGM, this allowed us
to iterate new information based on old knowledge. When
all new words are added, we get a new precision matrix

A =

(
A11 A12

A�
12 A22

)
.

Notice that [12] started graphical lasso algorithm with
U = S + ρI, and the diagonal of U remains unchanged in
what follows. So correspondingly, we can set u22 = s22 + ρ,
then update u12 in every step. a12 and a22 are recovered by:

â22 = 1/
(
u22 − u�

12β̂
)
and â12 = −β̂â22.

We still need to update columns and rows in A11, for new
nodes and edges in the conditional dependence graph may
change the old edges of the old graph.

Denote p2 as the number of new concepts from new texts.
From above, we propose incremental MNGM as algorithm 2,
and incremental Matrix GloVe as algorithm 3. Iteration can
also be run in parallel in algorithm 3.

When the new data dimensions are too high for glasso
to run fast, [11] proposed a significantly faster algorithm for
learning large-scale sparse graphical models through max-
imum determinant matrix completion (MDMC). We can
use this algorithm to replace the glasso step (4) in MNGM,
we refer to it as fastMNGM below. The algorithm requires
stricter sparsity conditions to ensure its equivalence with
glasso, and hence may not be as accurate as glasso in ap-
plication. But it greatly speeds up the process and enables
the calculation of data with higher dimensions. Two small
simulation experiments are shown below.

Simulation 1: High dimension with high sparsity.
With true precision matrix A1 ∈ R

4000×4000, B1 ∈ R
200×200,

sample size generated n = 50, with same initial matrices
and same sparsity parameter (λ for step A, and ρ for step
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Algorithm 2 Incremental MNGM

Input:
the old matrix U11 and A11

New concepts embedding matrix Y ′

Output:
Precision Matrix A

for iteration i = 1, 2, · · · , p2 do
Take Y ′

k,i,· as yk2 in equation (6)

Obtain a p+i−1-dimensional vector solution β̂ with (5). Fill
in the corresponding row and column of U using u12 = U11β̂
and u22 = s22 + ρ.

Use â22 = 1/
(
u22 − u�

12β̂
)
and â12 = −β̂â22 to fill in the

corresponding row and column of A.
end for
Use glasso to update whole precision matrix A until conver-
gence.

Algorithm 3 Incremental Matrix-GloVe

Input:
new articles;
Concepts C = {c1, c2, · · · , cp, c′p+1, · · · , c′p+p2}

Output:
Precision Matrices A & B

for iteration i = 1, 2, · · · , n do
Use paragraph bootstrap and incremental GloVe

to acquire updated embeddings of concepts W ′ (i) =
{w′ (i)

1 , w
′ (i)
2 , ..., w

′ (i)
p+p2

}
Form the matrix of concepts Y ′

i , whose jth row Y ′
i,j,· =

w
′ (i)
j

Randomly reset the orders of sentences in every paragraph
end for
Use Y ′ = {Y ′

1 , ..., Y
′
n} to estimate the precision matrix A′

through incremental MNGM

B, same notation as [32]. Define the non-zero entry in sparse
precision matrix A1, excluding diagonal elements, as ‘posi-
tive’. A1 has 5360 positive elements.

Simulation 2: Low dimension with low sparsity.
With true precision matrix A2 ∈ R

400×400, B2 ∈ R
200×200,

sample size generated n = 50, with same initial matrices
and same sparsity parameter (λ for step A, and ρ for step
B). A2 has 4122 positive elements.

Table 1 and table 2 shows the results executed on a stan-
dard laptop computer. When sparsity is high enough, and
data dimensions are high, fastMNGM is able to achieve a
comparable result with a much faster speed.

2.6 Linearly additive property

Let vec(A) be the vectorization of a matrix A obtained
by stacking the rows of the matrix A on top of one another.
Let c1 be the target concept, whose embedding is w1, and
c2, c3, ..., cn be all the other concepts, whose embeddings
are w2, w3, ..., wn. We want to know if c1’s embedding can

Table 1. Simulation 1 Result (High dimension with high
sparsity, A1 ∈ R

4000×4000)

Algorithm λ ρ Precision Recall Iteration Time

MNGM 41.97 34.27 99.55% 99.96% 37 min 51 s
fastMNGM 41.97 34.27 92.99% 86.11% 1 min 8 s

MNGM 38.97 31.82 99.51% 99.96% 38 min 11 s
fastMNGM 38.97 31.82 84.87% 93.58% 1 min 29 s

Table 2. Simulation 2 Result (Low dimension with low
sparsity, A2 ∈ R

400×400)

Algorithm λ ρ Precisiony Recall Iteration Time

MNGM 7.76 7.34 97.78% 98.66% 6 s
fastMNGM 7.76 7.34 8.03% 99.61% 11 s

MNGM 10.34 9.79 100% 93.99% 7 s
fastMNGM 10.34 9.79 8.50% 95.91% 12 s

be expressed linearly by other embeddings. Namely w1 =
α2w2 + α3w3 + ...+ αnwn + d, where d is a constant.

Proposition 3. Suppose that the stacked embedding vec-
tors of concepts follow a matrix normal distribution, W =⎛
⎜⎜⎝
w�

1

w�
2

...
w�

n

⎞
⎟⎟⎠ ∼ MNn,q(M ;Un, V ), M =

⎛
⎜⎜⎝
m�

1

m�
2

...
m�

n

⎞
⎟⎟⎠ and Un =

(
u11 U12

U21 U22

)
.

Then for a concept c1, whose embedding is w1, we have

E(w�
1 −m�

1 |w2, ..., wn) = β1(w
�
2 −m�

2 )+ ...+βn(w
�
n −m�

n )

where β =

⎛
⎜⎜⎝
β1

β2

...
βn

⎞
⎟⎟⎠ = (U12 × U−1

22 )�

Proof. W =

(
w�

1

W\1,·

)
∈ R

n×q. As we know, vec(W�) ∈

R
nq×1 ∼ MNnq(vec(M

�), Un ⊗ V ). Similarly, vec(W�
\1,·) =⎛

⎝w2

...
wn

⎞
⎠ ∼ MN(n−1)q(

⎛
⎝m2

...
mn

⎞
⎠ , U22 ⊗ V ).

Assume that U−1
22 exists, use the conditional probability

of joint normal distribution:

E(w�
1 |w2, ..., wn)=(W\1,· −M\1,·)

�×(U12×U−1
22 )�+m�

1

= [

⎛
⎝w�

2

...
w�

n

⎞
⎠−

⎛
⎝m�

2

...
m�

n

⎞
⎠]� × β +m�

1

= β1(w
�
2 −m�

2 )+...+βn(w
�
n −m�

n )+m�
1

Hence the result.
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From Proposition 3 we can see, E(w1|w2, w3, ..., wn) is a
linear combination of embedding vectors of all other words.
The coefficient vector β can be calculated by (U12×U−1

22 )�.
However, the U−1

22 can be hard to calculate when n is
large. Here we propose a simplified algorithm. Denote J

as

(
1 0
0 U21

)
n×2

, denote K as

(
0 U12

1 0

)
2×n

, so JK =(
0 U12

U21 0

)
n×n

, Hence (U − JK)−1 =

(
u11 0
0 U22

)−1

=( 1
u11

0

0 U−1
22

)
. So we can obtain U−1

22 by calculating (U −

JK)−1. According to Sherman-Morrison-Woodbury for-
mula:

(U − JK)−1 = U−1 + U−1J
(
I −KU−1J

)−1
KU−1

= A+AJ(I −KAJ)−1KA.

where A is considered known, and (I − KAJ) is a 2 × 2
matrix, so the calculation of inversion is greatly reduced.
Proposition 3 tells us that in context, one embedding vector
of one concept can be linearly expressed by other concepts’
vectors, which is meaningful in semantic space.

Here we pick two examples from the real data analysis
task of textbook corpus for illustration:

′modified likelihood′

=0.027× ′likelihood′

+0.349× ′modified profile likelihood′

−0.074× ′profile likelihood′

′Jeffreys prior density′

=0.249× ′Jeffreys prior′

+0.322× ′prior density′

3. APPLY MATRIX-GLOVE TO GCN

With feature matrices (embedding matrices), we can ob-
tain a precision matrix, which represents the conditional
dependence graph. This graph can be very useful in many
downstream tasks combined with graph neural networks.

DeepWalk is a two-stage method. In the first stage, it tra-
verses the network with random walks to infer local struc-
tures by neighborhood relations. In the second stage, it uses
Skip-Gram to learn embeddings that are enriched by the
inferred structures. Therefore, we get new embeddings of
nodes in the undirected graph. And with these new embed-
dings of nodes, we can use Matrix-GloVe again to obtain a
new undirected graph. See Figure 1.

3.1 Simulation

We generate three groups of samples: G1, G2, G3, as-
signed three labels separately. G1 ∈ R

300×200, G2 ∈

Figure 1. Flowchart of Matrix-GloVe+Deepwalk+GCN. The
feature matrices can be output vectors of GloVe.

R
300×200, G3 ∈ R

300×200, G =

⎛
⎝G1

G2

G3

⎞
⎠ ∈ R

900×200, and

G ∼ MN900,200(0,Σ0 ⊗ V ), where Σ0 =

⎛
⎝Σ1 0 0

0 Σ2 0
0 0 Σ3

⎞
⎠.

Σ1,Σ2,Σ3 and V are randomly generated. Then we gen-
erated the observation matrix Y ∈ R

900×200×20 from the
distribution of G. The Σ0 can be viewed as the true graph.
And the labels of sample are completely depended on Σ0.

We apply MNGM+Deepwalk+GCN on the observation
matrices and the node classification as a downstream task.
As a comparison, we apply GCN on a k-NN graph, and also
apply MNGM+GCN on the same data. Table 3 shows that
the MNGM graph is better than the k-NN graph in doing
such node classification, showing that the graph learned by
penalized MNGM is more suitable for GCN than a k-NN
graph.

Table 3. Simulation Result

Algorithms Accuracy

k-NN+GCN 40%

MNGM+GCN 92%

MNGM+Deepwalk+GCN 94%

4. EMPIRICAL STUDY

4.1 Corpus

Scenario 1: concept graph learning for textbooks.
We collected 10 classic books on statistics as our train-
ing corpus, including Statistical Models by Davison, A First
Course in Probability by Ross, etc. The vocabulary size is
about 39,000 after we remove the stop words. The input of
the GloVe model should be text file, so our files are all .txt
files. Table 4 shows the textbook list.

Books about statistics can have a lot of digits and math-
ematical symbols, which makes it difficult to learn their se-
mantics. So we remove those characters that are not En-
glish letters. This helps GloVe to avoid noise from digits
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Table 4. Textbook List

Index Book Information

1
Agresti, A. (2002). Categorical data analysis. Wiley-
Interscience. [1]

2
Blitzstein, J. K. and Hwang, J.(2014). Introduction
to probability. CRC Press. [3]

3
Boyd, S.P. (2004). Convex optimization. Cambridge, U
K: Cambridge University Press. [4]

4

Buşoniu L., Babuška R., De Schutter B. and E-

rnst D. (2010). Reinforcement Learning and Dynamic
Programming Using Function Approximators. Scopus.
[5]

5
Givens, G. H.(2013). Computational statistics. John
Wiley & Sons, Inc., Hoboken, NJ [14]

6
Davison, A. C.(1993). Statistical Models. Cambridge
University Press. [9]

7
Goodfellow, I., Bengio, Y. and Courville, A.

(2016). Deep learning. MIT Press, Cambridge, MA.
[15]

8
Harrell, F. E. J. Regression modeling strategies: w-
ith applications to linear models, logistic and ordinal
regression, and survival analysis. Cham: Springer. [16]

9
Racine, J.S. (2008). Nonparametric Econometrics: A
Primer. Quantile. [28]

10
Ross, S. M. (2009). A first course in probability, 8th
edition Pearson Prentice Hall. [30]

and mathematical symbols. For the sake of unity, the upper
case letters are changed to lower case letters.

We use GloVe model to obtain the word embeddings of
the concepts we are interested in, referred to as target con-
cepts. As we know, GloVe only learns the embeddings of
every single word in the corpus, but a concept may be com-
posed of multiple words. Therefore, we combine the words
of every target concept into one single word by simply con-
catenating them. So we can accurately get the embedding of
each concept. For example, the concept ‘random variable’ is
replaced by ‘randomvariable’, so that we can get one precise
word embedding for ‘randomvariable’. These concepts are
derived from the index table at the end of each book, which
lists all the important indexes mentioned in the book.

Scenario 2: node classification on the BBC and
BBCSport datasets. BBC Datasets are two news arti-
cle datasets, originating from BBC News, provided for use
as benchmarks for machine learning research. BBC dataset
consists of 2225 documents from the BBC news website cor-
responding to stories in five topical areas from 2004-2005.
It has 5 class labels: business, entertainment, politics, sport,
and tech. BBCSport dataset Consists of 737 documents from
the BBC Sport website corresponding to sports news arti-
cles in five topical areas from 2004-2005. It has 5 class labels:
athletics, cricket, football, rugby, and tennis.

4.2 Algorithm settings

We set the GloVe context window size as 20, and the em-
bedding size q as 200. For target concepts in scenario 1, we
chose 802 concepts from the index tables of A First Course
in Probability by Ross and Statistical Models by Davison.

For paragraph bootstrap, we separate paragraphs by
punctuation from ‘.’, ‘!’ or ‘?’ plus a newline character. And
we separate sentences by a ‘.’, ‘!’ or ‘?’. Then we randomly
shuffle the sentences in every paragraph for n = 50 times,
so we get 50 text files.

To evaluate the output of the model, we use an evalua-
tion set annotated and checked manually by some doctoral
students and teachers of Renmin University. The relations
between some concept pairs are annotated 0 / 1. The eval-
uation set includes 822 pairs of concepts, of which 306 pairs
are marked as 1 and 416 pairs are marked as 0. For exam-
ple, ‘correlation, covariance, 1’ and ‘correlation, central limit
theory, 0’.

In each evaluation, note TP as the number of concept
pairs marked with 1 on the evaluation set predicted as 1; FN
is the number of concept pairs marked as 1 on the evaluation
set predicted as 0; FP is the number of concept pairs marked
0 on the evaluation set predicted to be 1, and TN is the
number of concept pairs marked 0 on the evaluation set
predicted to be 0.

Calculate the following three indicators for each evalua-
tion:

accuracy =
TP + TN

TP + FN + FP + TN

precision =
TP

TP + FP

recall =
TP

TP + FN

F1 score is an index that takes into account the accuracy
and recall of the classification model.

F1 = 2 · precision · recall
precision+ recall

We use the F1 score as the standard for adjusting pa-
rameters and as a standard to evaluate the quality of the
model.

4.3 Test for matrix normal hypothesis

For embeddings learned from scenario 1, we randomly se-
lect a concept from all target concepts (happens to be ‘nor-
mal distribution’), draw histograms of certain dimensions of
50 observations. According to the matrix normal hypothe-
sis, the sample distribution should be similar to the normal
distribution. See Figure 2.
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Figure 2. Histograms of 2 dimensions of embeddings of
‘normal distribution’.

On the other hand, according to the matrix normal dis-
tribution, the embedding of two concepts follow:(

w�
i

w�
j

)
∼ N

(
0,

(
uii uij

uji ujj

)
⊗ V

)

where U and V are covariance matrices representing the
dependencies of rows and columns respectively. Therefore,
the covariance matrix of (wi, wj)

�
should be:(

uiiV uijV
ujiV ujjV

)

Therefore, the four sub matrices should be proportional. If
we plot heat maps for this covariance matrix, the four blocks
should show similar patterns. Therefore, if we draw the heat
map of sample covariance matrices of (wi, wj , wk)

�
for the

Figure 3. Heatmap of 3 random concepts’ sample covariance
matrix, diagonal elements are removed for better view.

randomly selected i, j, k, so the 3 × 3 sub blocks should be
proportional. Figure 3 gives us some confidence in the dis-
tribution hypothesis.

We also did a test for log(Xij) according to Proposi-
tion 2. We randomly generate 2q independent random vari-
ables from χ2 distribution with a degree of freedom of 1,
and use them to simulate the theoretical values of w�

i wj .
Then we compare the simulated ‘theoretical’ distribution
with the empirical distribution of log(Xij) obtained from
the co-occurrence in the corpus. Since we executed para-
graph bootstrap 50 times, we got 50 sample values. We
plotted Q-Q plots of simulated data and 50 log(Xij) for
a randomly chosen concept pair. If the two distributions
are similar, the image should be close to a straight line.
From Figure 4 we can see that the points are roughly in
a straight line, consistent with the hypothesis. We also did
a Kolmogorov-Smirnov test between two distributions for
this pair, of which the p-value is 0.84. Therefore, the H0 in
Section 2.3 cannot be significantly rejected. Across all pairs
of concepts, we did tests for 5568 pairs of (i, j) such that
log(Xij) > 0, and 5095 of them were not rejected with a
significant level α ≤ 0.05. These results give us confidence
in applying the Matrix-GloVe method to this corpus.

4.4 Concept graph learning

We trained word embeddings through GloVe model, over
the textbook corpus. Then we bootstrap the paragraphs 50
times, getting M ∈ R

802×200×50. We feed M to Matrix Nor-
mal Graphical Model separately, and output the estimation
of precision matrix Â,which is sparse for a 802×802 size
matrix. The sparse parameter λij is chosen by cross valida-

tion. The matrix Â has 136947 nonzero elements apart from
diagonal elements. The number can also be the number of
relations we find through the matrix GloVe model.
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Figure 4. Q-Q plot of the simulation distribution and log(Xij)
sample distribution. The horizontal axis is the quantile of
log(Xij) sample, and the vertical axis is the quantile of the

simulation data.

A glimpse of the concepts graph constructed from Â is
shown in Figure 5. Notice the edges means conditional de-
pendence, not traditional similarity. For instance, ‘Pearson’s
statistic’ is not connected to ‘F statistic’, although they
share some similarities in semantics. But both of them are
connected to ‘statistic’, meaning that they build relation-
ships through the concept ‘statistic’.

We compares the vectors output by GloVe, CBOW and
Skip-Gram, all with MNGM as a tool to learn the struc-
ture of target concepts, and evaluated through evaluation set
of annotated concepts pairs. Matrix-GloVe, CBOW MNGM
and Skip-Gram MNGM are all trained on the textbook cor-
pus, and adjusted the parameters through cross validation.
Table 5 shows that Matrix-GloVe outperforms other two
methods.

We also compares Matrix-GloVe with an SVM model on
the GloVe vectors of given concepts pair. With GloVe em-
beddings of two given concepts, GloVe-SVM connects the
two embeddings to predict whether the two concepts are
dependent. Table 6 shows that Matrix-GloVe outperforms
GloVe-SVM.

4.5 Node classification task

The node classification task is one where the algorithm
has to determine the labeling of samples (represented as
nodes) by looking at the labels of their neighbors. Node
classification models aim to predict non-existing node prop-
erties (known as the target properties) based on other node
properties. Typical models used for node classification con-
sist of a large family of graph neural networks.

Traditional node classification requires an initial graph
as the basis of graph neural networks. This can be achieved
through the known network in the database. However, some-
times there does not exist a known network in the database.

Figure 5. A glimpse of the concepts graph from the ouptput
of Matrix-GloVe.

Table 5. Model performance on test set

Model Accuracy Precision Recall F1

CBOW MNGM 56.6 % 44.4 % 67.2 % 53.5 %
Skip-Gram MNGM 71.4 % 66.9 % 46.4 % 54.6 %
Matrix-GloVe 72.4 % 67.6 % 49.9 % 57.2 %

Table 6. Matrix-Glove & SVM on test set

Model Accuracy Precision Recall F1

GloVe-SVM 55.2% 47.6% 30.5% 37.1%
Matrix-GloVe 72.4 % 67.6 % 49.9 % 57.2

Some would use certain easy ways, like a k-NN graph, to con-
struct an initial graph based on node embeddings. Instead,
we use MNGM Graph as the initial graph, and a simple
graph neural network model to do the node classification
task.

We first use GloVe and paragraph Bootstrap on BBC
and BBCSport datasets to get observation matrices sepa-
rately. Treating each article as a node, we apply Matrix-
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Table 7. Node Classification Result

Algorithms Acc on BBC Acc on BBCSport

GloVe+k-NN+GCN 86.3% 80.6%

Matrix-GloVe+GCN 91.6% 82.3%

Matrix-GloVe
+Deepwalk+GCN

93.8% 86.5%

Figure 6. training process on BBC dataset.

GloVe+Deepwalk+GCN on both observation matrices for
node classification tasks. As a comparison, we apply GCN
on a k-NN graph of observation matrices.

The BBC dataset training set includes 1000 documents;
validation set has 500 documents; 725 documents are left
for test set. The BBCSport dataset training set includes
300 documents; validation set has 200 documents; 237 doc-
uments are left for test set.

From Table 7 and Figure 6 we can see that ‘Matrix-
GloVe+Deepwalk+GCN’ achieves better performance and

faster convergence speed than ‘GloVe+k-NN+GCN’ in node
classification.

5. CONCLUSION

We developed the Matrix-GloVe, a framework to auto-
matically learn the conditional dependence graph for un-
structured data like concept words or phrases in the text
corpus, where the variables (concepts) are not jointly ob-
served with i.i.d. assumption. The graph describes the con-
ditional dependence structure between concepts given other
concepts, which means that the concepts (nodes) linked by
edges cannot be separated by other concepts, representing
an essential semantic relationship. Under the assumption
that all the concept vectors learned from GloVe jointly fol-
low a matrix normal distribution with sparse precision ma-
trices, we can test this hypothesis empirically. We found
the distribution for the log(Xij) is weighted sum of χ2(1)s,
where Xij is the co-occurrence counts for words i and j. We
also show that the linearly additive property holds under
this assumption. In Matrix-Glove, we employ the MDMC
optimization method to speedup the glasso algorithm when
dealing with huge dimensional data. Also, the algorithm is
adaptive to incremental accumulation of text corpus. On
the other hand, we developed a sentence granularity boot-
strap to get ‘independent’ repeats of samples to help en-
hance power.

In concept graph learning task, both from the vector qual-
ity and the link prediction perspective, Matrix-GloVe out-
performs not only related word2vec methods, like CBOW
and Skip-Gram, but also the SVM+GloVe vectors. In the
application of Matrix-GloVe to downstream algorithms, we
found that the conditional dependence graph learned by
Matrix-Glove is more suitable for GCN than other corre-
lation graphs like k-NN. But the GloVe embedding and
MNGM in Matrix-GloVe serve as two parts, how to inte-
grate them into a whole algorithm is left as a future study.

Received 30 September 2022
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