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Bayesian tensor-on-tensor regression with efficient
computation

Kunbo Wang and Yanxun Xu
∗

We propose a Bayesian tensor-on-tensor regression ap-
proach to predict a multidimensional array (tensor) of ar-
bitrary dimensions from another tensor of arbitrary dimen-
sions, building upon the Tucker decomposition of the regres-
sion coefficient tensor. Traditional tensor regression meth-
ods making use of the Tucker decomposition either assume
the dimension of the core tensor to be known or estimate it
via cross-validation or some model selection criteria. How-
ever, no existing method can simultaneously estimate the
model dimension (the dimension of the core tensor) and
other model parameters. To fill this gap, we develop an ef-
ficient Markov Chain Monte Carlo (MCMC) algorithm to
estimate both the model dimension and parameters for pos-
terior inference. Besides the MCMC sampler, we also de-
velop an ultra-fast optimization-based computing algorithm
wherein the maximum a posteriori estimators for param-
eters are computed, and the model dimension is optimized
via a simulated annealing algorithm. The proposed Bayesian
framework provides a natural way for uncertainty quantifi-
cation. Through extensive simulation studies, we evaluate
the proposed Bayesian tensor-on-tensor regression model
and show its superior performance compared to alternative
methods. We also demonstrate its practical effectiveness by
applying it to two real-world datasets, including facial imag-
ing data and 3D motion data.

Keywords and phrases: Fractional Bayes Factor, Markov
chain Monte Carlo, Tensor-on-tensor regression, Tucker de-
composition.

1. INTRODUCTION

Multi-dimensional arrays, also called tensors, are widely
used to represent data with complex structures in differ-
ent fields such as genomics, neuroscience, computer vi-
sion, and graph analysis. For example, a multi-tissue ex-
periment (Wang et al., 2019) collects gene expression data
in different tissues from different individuals, leading to
three-dimensional arrays (Genes× Tissues× Individuals).
Other notable examples include magnetic resonance imag-
ing data (MRI, three-dimensional arrays), functional MRI
(fMRI) data (four-dimensional arrays), and facial images

∗Corresponding author.

(four-dimensional arrays) (Vasilescu and Terzopoulos, 2002;
Hasan et al., 2011; Guhaniyogi and Spencer, 2021). In this
paper, we focus on the task of tensor-on-tensor regression
that predicts one multi-dimensional tensor from another
multi-dimensional tensor, e.g., predicting gene expression
across multiple tissues for multiple individuals from their
clinical/omics data with tensor structures.

One simple approach dealing with tensor-on-tensor re-
gression is to turn tensors into vectors, and then apply clas-
sic regression methods. However, such a treatment intro-
duces high-dimensional unstructured vectors and destroys
the correlation structure of data, resulting in a huge num-
ber of parameters to be estimated and potentially significant
loss of information. For example, to predict a response ten-
sor of dimensions N × Q1 × Q2 from a predictor tensor of
dimensions N×P1×P2, the classic linear regression method
requires estimating P1×P2×Q1×Q2 parameters, which may
cause overfitting or computational issues, especially when
the number of parameters is larger than the sample size N .

To reduce the number of free parameters while
preserving the correlation structure in modeling ten-
sor data, tensor decomposition techniques have been
widely applied (Kolda and Bader, 2009). The two
most commonly-used tensor decomposition methods
are the PARAFAC/CANDECOMP (CP) decomposition
(Harshman, 1970) and Tucker decomposition (Tucker,
1966). The CP decomposition reconstructs a tensor as a
linear combination of rank-1 tensors, each one of which is
represented as the outer product of a number of vectors.
On the other hand, the Tucker decomposition factorizes
a tensor into a small core tensor and a set of matrices
along each dimension. Both decomposition methods are
able to reduce model dimensionality to a manageable size
and make parameter estimation more efficient. Compared
to CP decomposition, Tucker decomposition allows a more
flexible correlation structure processed by the core tensor
and the freedom in choosing different orders, making it
useful in estimating data with skewed dimensions (Li et al.,
2013). In fact, CP decomposition is a special case of Tucker
decomposition with the core tensor being superdiagonal.

There is a rich literature on regression methods treating
tensors as either predictors or responses in both frequentist
and Bayesian statistics. Guo et al. (2012) and Zhou et al.
(2013) proposed tensor regression models to predict scalar
outcomes from tensor predictors by assuming that the co-
efficient tensor has a low rank CP decomposition. Li et al.
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(2013) later extended the framework by employing Tucker
decomposition for the coefficient tensor, and demonstrated
that Tucker decomposition is more suitable to deal with
tensor predictors of skewed dimensions and gains better
accuracy in neuroimaging data analysis. Guhaniyogi et al.
(2017) proposed a Bayesian approach to regression with a
scalar response on tensor predictors by developing a multi-
way Dirichlet generalized double Pareto prior on tensor mar-
gins after applying CP decomposition to the coefficient ten-
sor. Miranda et al. (2018) developed a Bayesian tensor par-
tition regression model using a generalized linear model with
a sparse inducing normal mixture prior to learn the rela-
tionship between a matrix response (clinical outcomes) and
a tensor predictor (imaging data). Li and Zhang (2017) pro-
posed a parsimonious regression model with tensor response
and vector predictors adopting a generalized sparsity prin-
ciple based on Tucker decomposition. To detect neuronal
activation in fMRI experiments, Guhaniyogi and Spencer
(2021) developed a Bayesian regression approach with a ten-
sor response on scalar predictors by introducing a novel mul-
tiway stick breaking shrinkage prior distribution on tensor
structured regression coefficients.

There exist many scientific applications that require
methods for predicting a tensor response from another ten-
sor predictor. One typical example in fMRI studies is to de-
tect brain regions activated by an external stimulus or con-
dition (Zhang et al., 2015). Hoff (2015) proposed a tensor-
on-tensor bilinear regression framework to handle a special
case where the tensor predictor has the same dimension as
the tensor response making use of Tucker decomposition.
Billio et al. (2018) introduced a Bayesian tensor autoregres-
sive model to tackle tensor-on-tensor regression, and used
CP decomposition to provide parsimonious parametrization.
Lock (2018) proposed to predict a tensor response from an-
other tensor predictor by assuming that the coefficient ten-
sor has a low-rank CP factorization. Gahrooei et al. (2021)
extended the work of Lock (2018) to allow multiple tensor
inputs under the Tucker decomposition framework.

Despite advances in methods development for dealing
with tensor data, there are some limitations in the aforemen-
tioned methods. First, tensor-on-tensor regression meth-
ods based on CP decomposition, e.g., Lock (2018), require
both the response tensor and the predictor tensor to have
the same rank in CP decomposition, making them restric-
tive when the response and predictor tensors have different
ranks. Second, the rank in CP decomposition and the dimen-
sion of the core tensor in Tucker decomposition (i.e., model
dimension) are essential for statistical inference in tensor-on-
tensor regression models. However, they are either assumed
known or estimated via cross-validation (Gahrooei et al.,
2021) or some model selection criteria, such as Bayesian in-
formation criterion (Guhaniyogi and Spencer, 2021). To our
best knowledge, there is no existing method that can simul-
taneously estimate the model dimension and parameters.

In this paper, we develop a novel Bayesian approach for
tensor-on-tensor regression based on Tucker decomposition

of the coefficient tensor. The main contributions of this work
are threefold. First, our Bayesian framework is built upon
the flexible Tucker decomposition so that the response ten-
sor and the predictor tensor can have different dimensions
in the core tensor. Second, we propose an efficient Markov
chain Monte Carlo (MCMC) algorithm to simultaneously
estimate the model dimension (the dimension of the core
tensor) and parameters. The resulting posterior inference
naturally offers us characterization of uncertainty in param-
eter estimation and prediction. Third, as an alternative to
MCMC, we develop an ultra-fast computing algorithm, in
which the maximum a posteriori (MAP) estimators for pa-
rameters are computed and meanwhile the dimension of the
core tensor is optimized via a simulated annealing (SA) al-
gorithm (Kirkpatrick et al., 1983).

The rest of the article is organized as follows. We start
with introducing some preliminaries in Section 2. Section 3
describes the proposed Bayesian tensor-on-tensor regression
model. We develop an efficient MCMC algorithm to simul-
taneously estimate the model dimension and parameters in
Section 4. An optimization-based ultra-fast computational
algorithm for inference is described in Section 5. Section 6
evaluates the proposed approach via simulation studies and
comparisons to alternative methods. Section 7 provides real
data analyses on facial imaging data and 3D motion data.
Section 8 concludes with a discussion.

2. PRELIMINARIES

2.1 Notations

We begin with introducing notations and operations that
will be used throughout the paper. We use uppercase black-
board bold characters (X) to denote tensors, bold uppercase
characters (X) to denote matrices, and bold lowercase char-
acters (a) to denote vectors. The order of a tensor is the
number of dimensions. For example, X ∈ R

I1×I2×···×IN de-
notes an N th order tensor, where In denotes the dimension
of the nth mode, n = 1, . . . , N . The ith entry of a vector a
is denoted as ai; the element (i, j) of a matrix X is denoted
as Xij ; and the entries of a tensor are defined by indices en-
closed in square brackets: X[i1,··· ,iN ], where in ∈ {1, · · · , In}
for n ∈ {1, · · ·N}. The nth element in a sequence of ma-
trices or vectors is denoted by a subscript in parenthesis.
For example, X(n) denotes the nth matrix in a sequence of
matrices, and x(n) denotes the nth vector in a sequence of
vectors.

The vectorization of a tensor X ∈ R
I1×I2×···×IN trans-

forms an N th order tensor into a column vector vecX such
that the entry X[i1,··· ,iN ] maps to the j th entry of vecX, that
is

(1) X[i1,··· ,iN ] = vecXj ,

where j = 1+
∑N

k=1(ik−1)
∏k−1

l=1 Il. Similarly, vecX is used
to denote the vectorization of a matrix X ∈ R

I1×I2 when
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N = 2 in (1). Matricization, also known as unfolding, is the
process of transforming a tensor into a matrix. The mode-n
matricization of a tensor X ∈ R

I1×I2×···×IN is denoted by
X(n) ∈ R

In×J where J =
∏

k �=n Ik. The entry X[i1,··· ,iN ] of
X maps to the (in, j) element of the resulting matrix X(n),
where

j = 1 +

N∑
k=1
k �=n

(ik − 1)Jk with Jk =

k−1∏
l=1
l �=n

Il.

A more general treatment of the tensor matricization
is defined as follows. Let R = {r1, · · · , rL} and C =
{c1, · · · , cM} be two sets of indices such that R ∪ C =
{1, · · · , N} and R ∩ C = ∅. Then the matricized tensor can
be specified by X(R×C) ∈ R

J×K , where J =
∏

n∈R In and
K =

∏
n∈C In. And the entry X[i1,··· ,iN ] maps to the (j, k)

element of the matrix X(R×C), that is

(2) X[i1,··· ,iN ] =
(
X(R×C)

)
jk

,

where

j = 1 +

L∑
l=1

[
(irl − 1)

l−1∏
l′=1

Irl′

]
,

and

k = 1 +

M∑
m=1

[
(icm − 1)

m−1∏
m′=1

Icm′

]
.

The Kronecker product of matrices U ∈ R
I×J , and

V ∈ R
K×L is denoted by U ⊗ V with the detailed defi-

nition and properties shown in A.1. The product of a tensor
and a matrix in mode n is defined as the n-mode prod-
uct. The n-mode product of X ∈ R

I1×I2×···×IN with a
matrix U ∈ R

J×In is denoted by X ×n U, resulting in
a new tensor Y ∈ R

I1×···×In−1×J×In+1×···×IN where the
[i1, · · · in−1, j, in+1, · · · iN ] entry is defined by

Y[i1,··· ,in−1,j,in+1,··· ,iN ] =

In∑
in=1

X[i1,··· ,iN ]Ujin .

An important fact regarding the n-mode product is that
given matrices U ∈ R

J1×In , V ∈ R
J2×Im with m �= n, and

tensor X ∈ R
I1×I2×···×IN , then

X×n U×m V = (X×n U)×m V = (X×m V)×n U.

For two tensors X ∈ R
I1×···×IN×P1×···×PL , and Y ∈

R
P1×···×PL×J1×···×JM , the contracted tensor product 〈X,Y〉L

is defined as

Z = 〈X,Y〉L ∈ R
I1×···×IN×J1×···×JM

with

Z[i1,··· ,iN ,j1,··· ,jM ] =

Figure 1. Illustration of Tucker decomposition. Here, the core
tensor is of dimension (4, 3, 3).

P1∑
p1=1

· · ·
PL∑

pL=1

X[i1,··· ,iN ,p1,··· ,pL]Y[p1,··· ,pL,j1,··· ,jM ].

It can be shown that for two matrices U ∈ R
I×P and

V ∈ R
P×J , the contracted product 〈U,V〉1 is equivalent to

the standard matrix product UV. Therefore, the contracted
product of two tensors can be regarded as an extension of
the usual matrix product to higher-order operands.

2.2 Tucker decomposition

The proposed Bayesian tensor-on-tensor model is built
upon Tucker decomposition (Tucker, 1966), which decom-
poses a tensor B ∈ R

I1×I2×···×IN into a core tensor G and a
set of factor matrices A(n), n = 1, . . . , N , denoted by

B = [[G;A(1),A(2), · · · ,A(N)]].

Or equivalently,

B = G×1 A(1) ×2 A(2) · · · ×N A(N),

with G ∈ R
J1×···×JN being the core tensor and A(n) ∈

R
In×Jn being the factor matrix in mode n, for n = 1, · · · , N ,

forming a sequence of matrices. The order of G can be the
same as the order of B, but more often, we are interested in
compressing the information of B to a smaller size of G than
B. CP decomposition (Harshman, 1970) is a special case of
Tucker decomposition wherein the core tensor is superdiag-
onal.

3. A BAYESIAN TENSOR-ON-TENSOR
REGRESSION MODEL

Our task is to predict a tensor response Y ∈
R

N×Q1×···×QM from a tensor predictor X ∈ R
N×P1×···×PL .

We propose a Bayesian tensor-on-tensor regression frame-
work by extending the standard multivariate linear regres-
sion model from matrices to tensors:

(3) Y = 〈X,B〉L + E,

where B ∈ R
P1×···×PL×Q1×···×QM denotes the coefficient

tensor. In this paper, we assume that each element of
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E ∈ R
N×Q1×···×QM follows N(0, σ2) independently for il-

lustration simplicity. More flexible covariance structures are
discussed in Appendix A.6. The first L modes of B contract
the dimensions of X and the last M modes of B match the
modes of Y. For each of the N observations, there are a to-
tal of (

∏M
m=1 Qm) responses and (

∏L
l=1 Pl) predictors. The

model can be reformulated into a matrix form as follows,

(4) Y(1) = X(1)B(P×Q) + E(1),

where P = {1, · · · , L}, Q = {L + 1, · · · , L +M}, and each
row of E(1) independently follows N(0, σ2Id) with Id be-

ing an identity matrix of dimension (
∏M

m=1 Qm). From the
equivalence of (3) and (4), it is clear that our model (3)
supports linear relations between responses and predictors
for each observation.

If B is unconstrained, the estimation of B can be obtained
by conducting separate ordinary least squares (OLS) regres-

sions for each of the
∏M

m=1 Qm responses in Y(1) over X(1) by
equation (4) in the frequentist framework. However, the so-
lution is not well-defined if the number of observations N is
less than the number of responses

∏M
m=1 Qm. Even if the so-

lution is well-defined, separate OLS of equation (4) does not
consider the correlation structure within the response Y and
predictor X and between them. Moreover, the total number
of parameters in this case is

∏L
l=1 Pl

∏M
m=1 Qm, which can

be computationally challenging due to its gigantic size.
In our model, we assume that B follows the Tucker de-

composition defined by

(5) B = [[G;U(1), · · · ,U(L),V(1), · · · ,V(M)]],

where G denotes the core tensor of dimensions R1 × · · · ×
RL×S1×· · ·×SM , U(l) ∈ R

Pl×Rl denotes the factor matrix
corresponding to the mode l in B for l = 1, · · · , L, and
V(m) ∈ R

Qm×Sm denotes the factor matrix corresponding
to the mode L+m in B for m = 1, · · · ,M .

We complete the proposed Bayesian tensor-on-tensor re-
gression model by assigning priors to the core tensor G,
{U(l)}Ll=1, {V(m)}Mm=1, and σ2. For the core tensor G, we
consider a normal prior, that is vecG ∼ N(μG,ΣG)
where ΣG is diagonal. For factor matrices {U(l)}Ll=1 and
{V(m)}Mm=1, taking U(l) and V(m) as examples, we assign

normal priors for vecU(l) and vecV(m). That is, vecU(l) ∼
N(μUl

,ΣUl
), and vecV(m) ∼ N(μVm ,ΣVm), where ΣUl

and ΣVm are diagonal matrices. Usually we choose μUl
=

μU , μVm = μV , ΣUl
= ΣU , and ΣVm = ΣV for all

l = 1, · · · , L and m = 1, · · · ,M . Lastly we assign an in-
verse gamma prior distribution for σ2: σ2 ∼ IG(α, β). A
discussion on other choices of prior distributions and covari-
ance structures is provided in Appendix A.6.

4. POSTERIOR INFERENCE

We conduct posterior inference using Markov chain
Monte Carlo (MCMC) simulations. Given the dimension

θ = (R1, . . . , RL, S1, · · · , SM ) of the core tensor, we up-
date U(l), V(m), G, and σ2 using Gibbs sampling transition
probabilities for posterior updates, the details of which will
be given in Section 4.1. The posterior update of the core
tensor dimension θ is challenging since the dimensions of
U(l), V(m), and G change when θ varies. A reversible jump
(RJ) MCMC (Green, 1995) algorithm is a natural choice
for such a trans-dimensional update, however, it is diffi-
cult to construct a practicable RJ scheme due to the high-
dimensionality of the problem. To address this challenge,
we will develop an efficient Metropolis-Hastings (MH) algo-
rithm to update θ building upon the idea of fractional Bayes
factor (Lee et al., 2016; O’Hagan, 1995) in Section 4.2. The
R code for the proposed algorithms with demonstrating ex-
amples can be found at GitHub.

4.1 Posterior inference given the dimension
of the core tensor

Given the dimension θ = (R1, · · · , RL, S1, · · · , SM ) of
the core tensor G, we derive the full conditional posterior
distributions of {U(l)}Ll=1, {V(m)}Mm=1, G, and σ2 in closed
forms. Without loss of generality, we first derive the full con-
ditional posterior distribution of U(1). The full conditional
posterior distributions of {U(2), · · · ,U(L)} can be derived
in the same manner.

By properties of n-mode product of tensor and Tucker
decomposition, we have

B = G×2U(2) · · ·×LU(L)×L+1V(1) · · ·×L+MV(M)×1U(1).

Let B(−) denote G×2 U(2) · · · ×L U(L) ×L+1 V(1) · · · ×L+M

V(M), then B(−) ∈ RR1×P2×···×PL×Q1×···×QM , and

B = B(−) ×1 U(1).

We denote the contracted product of 〈B(−),X〉P2,··· ,PN
by a

new tensor called C, then tensor C ∈ R
R1×N×P1×Q1×···QM .

By tensor matricization of C into C(R×C) ∈
R

N
∏M

m=1 Qm×R1P1 , where R = {N,Q1, · · · , QM}, and
C = {R1, P1}, we can rewrite our model (3) as follows:

(6) vecY = C(R×C) × vecU(1) + vecE.

The proof for equation (6) is given in Appendix A.2.
Following (6), we can easily derive that the full con-

ditional posterior distribution of vecU(1) is normally dis-
tributed:
(7)
p(vecU(1) | vecY,X, σ2,V(m),U(l) l �= 1) ∼ N(μ′

U ,Σ
′
U ),

where

Σ′
U =

(
C

T
(R×C)C(R×C)

σ2
+Σ−1

U

)−1

,

μ
′

U = Σ′
U

(
C

T
(R×C)vecY

σ2
+Σ−1

U μU

)
.
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Figure 2. Illustration of updating U(1).

Figure 2 presents an illustration of updating U(1).

We then derive the conditional distributions of V(m)

given σ2, {U(l)}Ll=1, V(k) for k �= m, and G. Without loss
of generality, we derive the full conditional posterior distri-
bution of V(1) below.

Denote the contracted product of the tensor G ×1

U(1) · · · ×L U(L) ×L+2 V(2) · · · ×L+M V(M) and the tensor
X by a new tensor D, where D ∈ R

N×S1×Q2×···×QM . We

then matricize D into a matrix D(R×C) ∈ R
N

∏M
m=2 Qm×S1

and write

(8) Y(2) = V(1) × (D(R×C))
T + E(2),

where Y(2) ∈ R
Q1×N

∏M
m=2 Qm is the mode-2 matricization

of tensor Y. The proof of equation (8) can be found in Ap-
pendix A.3. Let Ỹ = Y

T
(2). Given that V(1) follows a nor-

mal distribution with a diagonal covariance matrix, we can
rewrite (8) as

vecỸ =
(
IQ1 ⊗ D(R×C)

)
× vecVT

(1) + vec
(
E(2)

)T
,

where IQ1 denotes an identity matrix of size Q1. Given that
the prior distribution of vecV(1) is a normal N(μV ,ΣV )
with diagonal ΣV , the prior distribution of vecVT

(1) is also a

normal distribution N(μ̃V , Σ̃V ) with a diagonal covariance

matrix. Then the full conditional posterior distribution of
vecV(1)

T is normally distributed:
(9)

p(vecVT
(1) | vecỸ,X, σ2,U(l),V(m) m �= 1) ∼ N(μ̃

′

V , Σ̃
′

V ),

where

Σ̃
′

V =

((
IQ1 ⊗ D(R×C)

)T (
IQ1 ⊗ D(R×C)

)
σ2

+ Σ̃−1
V

)−1

,

μ̃
′

V = Σ̃
′

V

((
IQ1 ⊗ D(R×C)

)T
vecỸ

σ2
+ Σ̃−1

V μ̃V

)
.

(10)

The posterior distribution of the core tensor G is more
complex than the posterior of U′

ls and V′
ms. First, we have

Y(1) = X(1)B(P×Q) + E(1)

= X(1)

(
U(L) ⊗ · · · ⊗U(1)

)
G(R×C)

×
(
V(M) ⊗ · · · ⊗V(1)

)T
+ E(1).

(11)

Let U denote
(
U(L) ⊗ · · · ⊗U(1)

)
, and V denote(

V(M) ⊗ · · · ⊗V(1)

)
, we have

(12) Y(1) = (X(1)U)G(R×C)V
T + E(1).

If we further let ˜̃Y denote Y(1)V(VTV)−1, and ˜̃E denote
E(1)V(VTV)−1, we can rewrite (12) as

˜̃Y = (X(1)U)G(R×C) +
˜̃E ,

or

vec ˜̃Y = (IS ⊗ (X(1)U))vecG(R×C) + vec ˜̃E ,

where IS denotes an S × S identity matrix with S =∏M
m=1 Sm, and vec ˜̃E is normally distributed with mean 0

and block diagonal covariance matrix σ2(VTV)−1 ⊗ IN .

Then vec ˜̃Y ∼ N(μ ˜̃Y
,Σ ˜̃Y

) with

μ ˜̃Y
= (IS ⊗ (X(1)U))× vecG(R×C) ,

Σ ˜̃Y
= σ2(VTV)−1 ⊗ IN .

Given that the prior distribution of vecG is N(μG,ΣG) with
a diagonal covariance ΣG, vecG(R×C) is also normally dis-

tributed with μ̃G and diagonal covariance Σ̃G by rearrang-
ing elements of μG and ΣG. Then the full conditional poste-
rior distribution of vecG(R×C) is a normal distribution with

μ̃
′

G = Σ̃
′

G

(
(IS ⊗ (X(1)U))T (Σ ˜̃Y

)−1vec ˜̃Y + Σ̃−1
G μ̃G

)
,

Σ̃
′

G =(
(IS ⊗ (X(1)U))T (Σ ˜̃Y

)−1(IS ⊗ (X(1)U)) + (Σ̃G)
−1

)−1

.

(13)
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Lastly, deriving the full conditional posterior distribution
of σ2 is straightforward:

(14) p(σ2 | Y,X, {U(l)}Ll=1, {V(m)}Mm=1,G) ∼ IG(α′, β′),

where α′ = α + NQ
2 , β′ = β +

‖Y−〈X,B〉L‖2
F

2 with B defined

in (5), and Q =
∏M

m=1 Qm.

4.2 Updating the model dimension

In this subsection, we show how to simultaneously up-
date the dimension of the core tensor and estimate model
parameters. Denote θ = (R1, . . . , RL, S1, · · · , SM ), and we
assign a prior distribution π(θ) to θ, in this study, a uni-
form distribution over all candidates of θ. Since conditional
posterior distribution of θ is not in closed form, we employ
a trans-dimensional Metropolis-Hastings (MH) sampler to
update θ. The most challenging task is to design a good
proposal distribution that can result in a reasonable accep-
tance rate given the fact that the dimensions of {U(l)}Ll=1,
{V(m)}Mm=1, and G change when θ varies.

To address the challenge, we construct our proposal
distribution building upon the idea of fractional Bayes
factor (O’Hagan, 1995; Lee et al., 2016). Assuming that
at iteration t − 1 of the MCMC sampler θ(t−1) =

(R
(t−1)
1 , · · · , R(t−1)

L , S
(t−1)
1 · · · , S(t−1)

M ), at iteration t we

generate a candidate θ̃ from the “neighbor” of θ(t−1) de-
fined as O(θ(t−1)) := {θ̃ ∈ Θ : ‖θ(t−1) − θ̃‖L1 = 1},
where Θ is the parameter space for θ. In this work, we
propose to generate θ̃ uniformly over all candidates in
O(θ(t−1)), denoted by q(θ̃ | θ(t−1)). To calculate the ac-
ceptance rate of the proposed θ̃ in the MH step, we denote
ξ =

(
{U(l)}Ll=1, {V(m)}Mm=1,G, σ2

)
, and write the likelihood

function as the multiplication of two parts:

p(Y | ξ,θ) = p(Y | ξ,θ)b︸ ︷︷ ︸
training

× p(Y | ξ,θ)(1−b)︸ ︷︷ ︸
testing

,

where b is small and 0 < b < 1. The key idea here is to uti-
lize a fraction b of the data as the training data to propose
new parameters ξ associated with θ̃ so that the new values
can be accepted with a reasonable acceptance probability.
In practice, we usually choose a small value of b, e.g., be-
tween 0.01 and 0.1, to obtain a reasonable acceptance rate.
In particular, we update θ(t) as follows:

• Generate θ̃ from q(· | θ(t−1)).
• Generate ξ̃ from a distribution proportional to

p(Y | ξ̃, θ̃)b × p(ξ̃ | θ̃) ,

which is the posterior of ξ based on the training portion
conditional on θ̃. The detailed conditional posterior dis-
tributions are shown in Appendix A.4.

• Generate ˜̃ξ from a distribution proportional to

p(Y | ˜̃ξ,θ(t−1))b × p(˜̃ξ | θ(t−1)) ,

which is the posterior of ξ based on the training portion
conditional on θ(t−1).

• Accept θ̃ with probability min
(
1, A(θ̃,θ(t−1)

)
where

(15)

A(θ̃,θ(t−1)) =
π(θ̃)q(θ(t−1) | θ̃)

π(θ(t−1))q(θ̃ | θ(t−1))
× p(Y | ξ̃, θ̃)(1−b)

p(Y | ˜̃ξ,θ(t−1))(1−b)︸ ︷︷ ︸
(∗)

.

The (*) part in equation (15) coincides with the fractional
Bayes factor given in O’Hagan (1995). The detailed proof is
given in Appendix A.5.

Algorithm 1 MCMC Sampler

1: Input data X,Y.
2: Initialize the core tensor dimension θ(0).
3: for t = 1, · · · , T do
4: Propose θ̃ ∈ O(θ(t−1)) from q(· | θ(t−1)).

5: Sample
(
{Ũ(l)}Ll=1, {Ṽ(m)}Mm=1, G̃, σ̃2

)
from full posterior

based on the training portion b conditional on θ̃ according
to Appendix A.4.

6: Sample
(
{ ˜̃U(l)}Ll=1, { ˜̃V(m)}Mm=1,

˜̃G, ˜̃σ2
)
from full posterior

based on the training portion b conditional on θ(t−1) ac-
cording to Appendix A.4.

7: Given
(
{Ũ(l)}Ll=1, {Ṽ(m)}Mm=1, G̃, σ̃2, θ̃

)
and(

{ ˜̃U(l)}Ll=1, { ˜̃V(m)}Mm=1,
˜̃G, ˜̃σ2,θ(t−1)

)
, calculate the

acceptance probability according to (15).
8: Update and save θ(t) given the acceptance probability.
9: Sample from full conditional posterior distributions:

10: Sample {vecU(t)

(l)}
L
l=1 according to (7).

11: Sample {vec
(
VT

(m)

)(t)}Mm=1 according to (9).

12: Sample vecG
(t)

(R×C) according to (11).

13: Get {U(t)

(l)}
L
l=1, {V(t)

(m)}
M
m=1,G

(t) according to (1), (2).

14: Sample
(
σ2

)(t)
according to (14).

15: Calculate B
(t) given by

B
(t) = [[G(t); {U(t)

(l)}
L
l=1, {V(t)

(m)}
M
m=1]] .

16: Save
(
{U(t)

(l)}
L
l=1, {V(t)

(m)}
M
m=1,G

(t),B(t),
(
σ2

)(t))
.

17: end for

We summarize the full MCMC sampler in Algorithm 1.
For predictive inference, it is straightforward based on the
posterior samples obtained from Algorithm 1. Given new
data Xnew of Ñ samples, we can easily sample Ynew predic-
tions according to

(16) vecŶnew ∼ N(vec
(
〈Xnew, B̂〉L

)
, σ̂2IÑQ) ,

where Q =
∏M

m=1 Qm, and B̂ is calculated by (5) using post-
burn-in samples of G, {U(l)}Ll=1, {V(m)}Mm=1, and σ2.
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5. FAST COMPUTING ALGORITHM

In practice, the proposed MCMC sampler involves gen-
erating samples from high-dimensional conditional poste-
rior distributions at each iteration, which can be time-
consuming. In this section, we propose an ultra-fast
optimization-based computing algorithm as an alternative
for posterior inference using the maximum a posteriori prob-
ability (MAP) estimators. Given the dimension of the core
tensor, the MAP estimators of {U(l)}Ll=1, {V(m)}Mm=1,G,
and σ2 can be computed in closed forms. Specifically, the
MAP estimator of U(1) is
(17)

vecUMAP
(1) =

(
C

T
(R×C)C(R×C) + σ2Σ−1

U

)−1

C
T
(R×C)vecY,

when μU = 0. And if we further set ΣU to be an identity
matrix, the result is exactly the solution to the ridge linear
regression problem

argmin
U(1)

‖Y− 〈X,B〉L‖2F − λ
∥∥U(1)

∥∥2
2
,

with λ = σ2 and B = [[G;U(1), · · · ,U(L),V(1), · · · ,V(M)]].
Similarly, assuming μV = 0, and μG = 0, the MAP estima-
tors of V(1) and the core tensor G are given below:

vecVT
(1)

MAP
=(
IQ1 ⊗

(
D

T
(R×C)D(R×C)

)
+ σ2Σ̃−1

V

)−1

×
(
IQ1 ⊗ D

T
(R×C)

)
vecỸ ,

(18)

and

vecGMAP
(R×C) =((

VTV
)
⊗

(
(X(1)U)T (X(1)U)

)
+ σ2Σ̃−1

G

)−1

×
((
VTV

)
⊗ (X(1)U)T

)
vec ˜̃Y ,

(19)

with the same notations given in Section 4.1. And the MAP
estimator of σ2 is given by

(20)
(
σ2

)MAP
=

β′

α′ − 1

with α′ = α+NQ
2 , β′ = β+

‖Y−〈X,B〉L‖2
F

2 , andQ =
∏M

m=1 Qm.
We remark that the unregularized least square results in
Lock (2018) is a special case of our MAP results above,
when flat priors are given to U(l)’s and V(m)’s, and the core
tensor is fixed to be a superdiagonal tensor.

By using MAP estimators of {U(l)}Ll=1, {V(m)}Mm=1 and
G instead of generating samples from high dimensional
posterior distributions, the problem of choosing the op-
timal dimension of the core tensor becomes a discrete
optimization problem to find the tuple of parameters

over an (L + M)-dimensional grid of parameters θ :=
(R1, · · · , RL, S1, · · · , SM ) ∈ Θ that minimizes some loss
function. In this work, we use the Bayesian information cri-
terion (BIC) as the loss function.

To solve the discrete optimization problem, we adopt sim-
ulated annealing (SA) algorithm (Kirkpatrick et al., 1983),
which is a metaheuristic to approximate global optimum in
a large search space. Starting from the current guess θ(t)

at iteration t, we uniformly generate θ̃ from O(θ(t)). The
probability of accepting the new candidate θ̃ is A(θ̃,θ(t))
defined as follows:

A(θ̃,θ(t)) ={
1 if BIC(θ̃) < BIC(θ(t)),

exp(BIC(θ(t))−BIC(θ̃)
ζ(t) ) otherwise,

(21)

where ζ(t), a function of the iteration t, is the usual temper-
ature parameter in standard SA algorithm. Two commonly-
used choices for ζ(t) are ζ(t) = γtζ0 (Dosso and Oldenburg,
1991), and ζ(t) = ζ0

log(1+t) (Geman and Geman, 1984),

where ζ0 is the initial temperature. The detailed procedure
of the fast computing algorithm is shown in Algorithm 2.

Algorithm 2 Fast Computing Algorithm

1: Input data X ∈ R
N×P1×···×PL , and Y ∈ R

N×Q1×···×QM .
2: Initialize core tensor dimensions θ(0).
3: for t = 1, · · · , T do
4: Calculate the temperature of current SA step: ζ(t).
5: Generate θ̃ from the neighbour of θ(t).
6: for k = 1, · · · ,K do
7: Calculate {Ũ(k)

(l) }
L
l=1 using (17) and (1).

8: Calculate {Ṽ(k)

(m)}
M
m=1 using (18) and (1).

9: Calculate G̃
(k) using (19) and (2).

10: Calculate
(
σ̃2

)(k)
using (20).

11: end for
12: Given {Ũ(K)

(l) }Ll=1, {Ṽ(K)

(m)}
M
m=1, G̃

(K),
(
σ̃2

)(K)
, and θ̃ calcu-

late BIC.
13: Calculate acceptance probability A(θ̃,θ(t)) given by (21).

14: Generate r ∼ Unif(0, 1).
15: if r < A(θ̃,θ(t)) then

16: θ(t+1),G(t+1),
(
σ2

)(t+1)
= θ̃, G̃(K),

(
σ̃2

)(K)
.

17: {U(t+1)

(l) }Ll=1 = {Ũ(K)

(l) }Ll=1.

18: {V(t+1)

(m) }Mm=1 = {Ṽ(K)

(m)}
M
m=1.

19: else
20: θ(t+1),G(t+1),

(
σ2

)(t+1)
= θ(t),G(t),

(
σ2

)(t)
.

21: {U(t+1)

(l) }Ll=1, {V(t+1)

(m) }Mm=1 = {U(t)

(l)}
L
l=1, {V(t)

(m)}
M
m=1.

22: end if
23: end for
24: Calculate B

(T ) = [[G(T );U
(T )

(1) , · · · ,U
(T )

(L) ,V
(T )

(1) , · · · ,V
(T )

(M)]].

As will be shown in numerical studies of Section 6, the
proposed Algorithm 2 performs well in terms of parame-
ter estimation, and saves around 90% of the running time
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in most simulation cases. For example, the average running
time of the BayTensor MCMC algorithm on a problem with
X ∈ R

100×16×12 and Y ∈ R
100×10×8 is around 23 minutes

on a personal laptop, whereas the BayTensor Fast algorithm
takes less than 3 minutes when executed on the same ma-
chine. We also remark that we only obtain a point estimate
for parameter estimation from Algorithm 2 since it is an
optimization-based method. If one wants uncertainty quan-
tification of parameters, we suggest to use the estimated
optimal dimension of the core tensor from Algorithm 2, and
conduct the MCMC sampler introduced in Section 4.1, i.e.,
update model parameters given the estimated dimension of
the core tensor. Such a treatment is able to not only save
the computing time for updating the dimension of the core
tensor in Algorithm 1, but also quantify parameter uncer-
tainties.

6. SIMULATION STUDIES

We evaluate the proposed Bayesian tensor-on-tensor re-
gression model and the computational algorithms through
extensive simulation studies and comparisons to alternative
methods.

6.1 Simulation setup

Assume that the response tensor is a three-way array Y ∈
R

N×Q1×Q2 and the predictor tensor is another three-way
array X ∈ R

N×P1×P2 . The sample size is set to N = 100.
We set P1 = 16, P2 = 12, Q1 = 10, and Q2 = 8. We generate
simulated data as follows:

• Generate X ∈ R
N×P1×P2 .

• Generate U(l) and V(m) for l = 1, · · · , L and m =
1, · · · ,M , each with independent N(0, 1) entries.

• Generate G with θ∗ dimensions, and independent
N(0, 1) entries.

• Generate E ∈ R
N×Q1×Q2 .

• Calculate Y = 〈X,B〉L + cE, where

B = [[G;U(1), · · · ,U(L),V(1), · · · ,V(M)]],

and c is a scaling parameter for defining the signal-to-
noise (SNR) ratio such that

‖〈X,B〉L‖2F
c2 ‖E‖2F

= SNR.

We consider three different setups for generating the pre-
dictor tensor X and error E. In the first setup, all en-
tries of X and E are independently and identically gener-
ated from a normal distribution N(0, 1), called uncorrelated-
normal setup. To test the performance of our algorithms
when the simulated data generation model is different from
the data fitting model, in the second setup all entries of
X are independently and identically generated from a nor-
mal N(0, 1), and entries of E are independently and iden-
tically generated from a student-t distribution with a de-
gree of freedom 3. We call this uncorrelated-t setup. In the

third setup, we consider the entries for each observation of
tensor X to have a correlated structure, which can be seen
in some real-world applications such as spatial and tempo-
ral data (Lankao et al., 2008). We call it correlated setup.
Specifically, for each of the N observations of X, denoted
by X(n) ∈ RP1×P2 , n = 1, · · · , N , the correlation between

the (i, j) entry and (k, l) entry of X(n) is e
−r

√
|i−k|2+|j−l|2 ,

where i, k = 1, · · · , P1, j, l = 1, · · · , P2, and r > 0.

In each of the setups, we consider two cases for the sim-
ulated true dimension of the core tensor G: θ∗ = (3, 3, 3, 3)
and (4, 4, 2, 2), and two cases for SNR = 2 and 5, yielding a
total of four cases. We conduct 50 repeated experiments by
generating 50 replicated datasets for each case, and apply
the proposed Bayesian tensor-on-tensor method using both
the MCMC sampler (BayTensor MCMC) in Algorithm 1
and the fast computing Algorithm 2 (BayTensor Fast) for
each dataset.

To evaluate the performance of different methods, for
each dataset in each case we generate 5 new datasets with
Nnew = 1000 observations. The new observations are given
by

Ynew = 〈Xnew,B〉L + cEnew,

with Xnew and Enew generated in the same way as X and E.
We then calculate the relative prediction error (RPE), de-
fined as the average prediction error for the 5 new datasets:

RPE =
1

5

5∑
i=1

∥∥∥Y(i)
new − Ŷ

(i)
new

∥∥∥2
F∥∥∥Y(i)

new

∥∥∥2
F

,

where Ŷ
(i)
new is the predicted value for the dataset i, i =

1, . . . , 5. For BayTensor MCMC and BayTnesor Fast algo-
rithms, we also calculate the “Dimension Recovery” rate de-
fined by (the number of experiments where recovered dimen-
sion equals the true core tensor dimension) / (total number
of experiments) for each simulation setup.

For comparison, we consider four alternative methods:

• The tensor-on-tensor regression method based on the
CP decomposition from Lock (2018), denoted as the
CP method. As the CP method needs to pre-define or
estimate the rank R, we run their algorithm with dif-
ferent R’s and report the result under the optimal R
value, defined as the one yielding the smallest RPE.

• Multivariate linear regression method after turning ten-
sors to vectors to solve B(P×Q) in equation (4), denoted
as the OLS method.

• Bayesian multivariate linear regression method
with the rescaled spike and slab algorithm prior
(Ishwaran and Rao, 2005) for inducing sparsity af-
ter turning tensors to vectors, denoted as the SAS
(Spike-And-Slab) method.
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• Bayesian multivariate linear regression method with
the horseshoe prior (Carvalho et al., 2010) for induc-
ing shrinkage after turning tensors to vectors, denoted
as the HS (horseshoe) method.

6.2 Simulation results: uncorrelated setup

We first apply the proposed BayTensor MCMC with
b = 0.05, BayTensor Fast, and four alternative methods (in-
cluding the CP method, the OLS method, the SAS method,
and the HS method) to datasets under the uncorrelated-
normal setup. For the CP method, we run the algorithm
with R = 1, · · · , 6. The reason why we choose 6 as the upper
bound is that when R = 6, the total number of parameters
in the CP method is 276 which is larger than the true num-
ber of parameters 212 for the θ∗ = (4, 4, 2, 2) case and 219
for the θ∗ = (3, 3, 3, 3) case. The CP method with R = 6
yields the smallest RPE under both cases in all repeated
simulations. Full results from the CP method with different
R values are shown in Appendix A.9.

Table 1 reports the means and standard deviations (sd)
of RPEs averaging over 50 replicated experiments for each of
the four cases under the six methods. No matter when the
information in X and Y is balanced (i.e., θ∗ = (3, 3, 3, 3))
or skewed to some modes (i.e., θ∗ = (4, 4, 2, 2)), BayTensor
MCMC and BayTensor Fast always yield smaller prediction
RPEs than the CP method, while the OLS method, the SAS
method and the HS method all yield much larger RPEs. For
example, when θ∗ = (4, 4, 2, 2) with SNR = 2, BayTensor
MCMC and BayTensor Fast have comparable results with
mean RPEs being 0.350 and 0.357 respectively, while the
CP method has a slightly larger mean RPE of 0.377, and the
OLS method, the SAS method, and the HS method all have
much larger mean RPE of 1.016, 0.970, and 1.114 respec-
tively. The superior performance of the Bayesian tensor-on-
tensor regression method over the CP method comes from
the flexibility of Tucker decomposition that permits differ-
ent orders along different modes of the core tensor. From
Table 1, we can also see that a larger signal to noise ratio
leads to lower RPEs. In particular, when SNR = 5, all meth-
ods, except for the HS method, have lower RPEs compared
to the results from cases where SNR = 2.

As the proposed BayTensor MCMC method and BayTen-
sor Fast method can simultaneously estimate the dimension
of the core tensor and other model parameters, we next re-
port the empirical probabilities that the true dimension of
the core tensor can be recovered by them in 50 replicated
experiments for all 4 cases, as shown in Table 2. BayTensor
MCMC has higher recovering rates than BayTensor Fast in
all cases. And we can better recover the core tensor dimen-
sion with a higher SNR. Another observation is that both
BayTensor MCMC and BayTensor Fast have higher recov-
ering rates when θ∗ = (3, 3, 3, 3) compared with the cases
where θ∗ = (4, 4, 2, 2).

We also present the average numbers of parameters re-
quired by BayTensor MCMC and BayTensor Fast in 50

replicated experiments in Table 2. BayTensor MCMC and
BayTensor Fast usually require smaller numbers of parame-
ters than the CP method. For example, when θ∗ = (4, 4, 2, 2)
with SNR = 2, BayTensor MCMC requires 207 parameters
on average, and BayTensor Fast requires 196 parameters
on average. In contrast, the CP method with R = 6 has
276 parameters. When θ∗ = (3, 3, 3, 3) with SNR = 2, the
average numbers of parameters are 218, 193, and 276 for
BayTensor MCMC, BayTensor Fast, and the CP method
respectively. We can see that both BayTensor MCMC and
BayTensor Fast yield higher dimension recovery rates than
the CP method with smaller numbers of parameters.

To quantify the prediction uncertainty, for each test
dataset under each simulation setup, we collect 1000 post-
burn-in samples from BayTensor MCMC and generate the
empirical posterior predictive distribution for each element
of Ynew. The symmetric credible intervals are then calcu-
lated. For cases with θ∗ = (4, 4, 2, 2), the empirical coverage
rates for 95% credible interval are 0.944 (0.013) and 0.945
(0.012) for SNR = 2 and SNR = 5 respectively. And for
cases with θ∗ = (3, 3, 3, 3), the empirical coverage rates for
95% credible interval are 0.950 (0.011) and 0.950 (0.011) for
SNR = 2 and SNR = 5 respectively. Figure 3(a) plots the
predictive posterior estimations with 95% credible intervals
for a randomly-selected sample of Ynew under a randomly-
selected test case when θ∗ = (3, 3, 3, 3) and SNR = 5. Fig-
ure 3(b) plots the empirical predictive distributions from
BayTensor MCMC for 8 randomly selected elements from
the same sample of Ynew shown in Figure 3(a).

We then apply all six methods to datasets under the
uncorrelated-t setup. The results are very similar to those
under the uncorrelated-normal setup, suggesting that our
proposed algorithms have reasonably good performance un-
der model mis-specification when the data fitting model is
different from the data generating model. The RPEs and
dimension recovery results are presented in Table A.1 and
Table A.2 of Appendix A.7, respectively.

6.3 Simulation results: correlated setup

We then apply the proposed BayTensor MCMC method
with b = 0.05, the BayTensor Fast method, the CP method,
the OLS method, the SAS method, and the HS method to
datasets under the correlated setup. For the CP method, we
run the algorithm with R = 1, · · · , 6. The CP method with
R = 6 yields the smallest RPE under all cases except for the
case of θ∗ = (4, 4, 2, 2) and SNR = 2 where the optimal R =
5. Full results from the CP method with different R values
are shown in Appendix A.9. For each replicated dataset,
we compute the RPEs under all four methods. The means
and standard deviations (sd) of RPEs averaging over the 50
replicated datasets for all 4 cases are presented in Table 3.

The prediction RPE results under the correlated setup
are analogous to the results under the uncorrelated setup.
To summarize, the RPE results from Baytensor MCMC and
BayTensor Fast are comparable in all cases. And both of
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Table 1. Mean RPE with SD on uncorrelated-normal data

RPE (SD) BayTensor MCMC BayTensor Fast CP Method OLS Method SAS Method HS Method

θ∗ = (4, 4, 2, 2), SNR=2 0.350 (0.013) 0.357 (0.026) 0.377 (0.014) 1.016 (0.034) 0.970 (0.025) 1.114 (0.310)

θ∗ = (3, 3, 3, 3), SNR=2 0.343 (0.004) 0.351 (0.015) 0.391 (0.016) 1.023 (0.031) 0.963 (0.020) 1.079 (0.153)

θ∗ = (4, 4, 2, 2), SNR=5 0.173 (0.001) 0.185 (0.034) 0.209 (0.046) 0.751 (0.030) 0.946 (0.038) 1.182 (0.410)

θ∗ = (3, 3, 3, 3), SNR=5 0.172 (0.001) 0.181 (0.037) 0.222 (0.016) 0.748 (0.023) 0.934 (0.031) 1.136 (0.240)

Table 2. Core tensor dimension recovery and number of model parameters on uncorrelated-normal data

BayTensor MCMC BayTensor Fast

Dimension Recovery # Parameters (SD) Dimension Recovery # Parameters (SD)

θ∗ = (4, 4, 2, 2), SNR=2 80% 207 (15) 46% 189 (14)

θ∗ = (3, 3, 3, 3), SNR=2 98% 218 (6) 54% 193 (18)

θ∗ = (4, 4, 2, 2), SNR=5 96% 215 (14) 64% 209 (16)

θ∗ = (3, 3, 3, 3), SNR=5 100% 219 (0) 76% 215 (16)

Table 3. Mean RPE with SD on correlated data

RPE (SD) BayTensor MCMC BayTensor Fast CP Method OLS Method SAS Method HS Method

θ∗ = (4, 4, 2, 2), SNR=2 0.344 (0.004) 0.350 (0.006) 0.370(0.011) 0.886 (0.086) 0.542 (0.115) 1.380 (0.540)

θ∗ = (3, 3, 3, 3), SNR=2 0.344 (0.004) 0.348 (0.006) 0.369(0.007) 0.893 (0.065) 0.532 (0.121) 1.366 (0.783)

θ∗ = (4, 4, 2, 2), SNR=5 0.173 (0.002) 0.175 (0.003) 0.188(0.006) 0.492 (0.086) 0.397 (0.141) 1.466 (0.648)

θ∗ = (3, 3, 3, 3), SNR=5 0.173 (0.008) 0.173 (0.003) 0.187(0.006) 0.497 (0.059) 0.384 (0.150) 1.479 (1.003)

Table 4. Core tensor dimension recovery and number of model parameters on correlated data

BayTensor MCMC BayTensor Fast

Dimension Recovery # Parameters (SD) Dimension Recovery # Parameters (SD)

θ∗ = (4, 4, 2, 2), SNR=2 72% 207 (17) 36% 196 (16)

θ∗ = (3, 3, 3, 3), SNR=2 86% 214 (14) 32% 164 (20)

θ∗ = (4, 4, 2, 2), SNR=5 96% 212 (7) 44% 188 (15)

θ∗ = (3, 3, 3, 3), SNR=5 96% 218 (6) 56% 196 (15)

them have better RPEs than the CP method followed by

the SAS method, and the OLS method. The HS performs

the worst in terms of yielding the highest RPEs in all cases.

And when the signal to noise ratio increases from 2 to 5,

the prediction accuracies are improved under all methods,

except for the HS method.

Table 4 shows the empirical probabilities of dimension

recovery and the average numbers of parameters required

by BayTensor MCMC and BayTensor Fast in 50 replicated

experiments. In all 4 cases, BayTensor MCMC and BayTen-

sor Fast both require a smaller number of parameters than

the CP method. And in terms of recovering the dimension

of the core tensor, BayTensor MCMC has higher empirical

probabilities of recovering the true dimension than BayTen-

sor Fast in all cases. And the recovering probabilities in the

cases where θ∗ = (3, 3, 3, 3) are higher than those in cases

where θ∗ = (4, 4, 2, 2) for both methods. We also observe

that the recovering probabilities under the correlated setup

are smaller than those under the uncorrelated setup for both

the BayTensor MCMC and BayTensor Fast.

7. REAL DATA ANALYSES

We demonstrate the usefulness of the proposed Bayesian
tensor-on-tensor regression approach by applying it to two
real-world datasets: labeled faces in the wild database
(Huang et al. (2007)) and multi-person motion (UMPM)
benchmark (Van der Aa et al., 2011).

7.1 Facial image data

We apply the proposed Bayesian tensor-on-tensor regres-
sion approach, with b = 0.05, to predict different attributes
of facial images, such as smiling and nose size, using the
labeled faces in the wild database (Huang et al. (2007)).
The database collects more than 13,000 face images, each
of which has been labeled with the name of the person pic-
tured, often a celebrity. There can be multiple images for
one person.

We use the estimation results from the attribute classi-
fiers developed in Kumar et al. (2011) for response Y, result-
ing in a total of 73 describable attributes. These attributes
can be categorized into characteristics that describe a per-
son, an expression, or an accessory. The attributes are all
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Figure 3. Uncertainty quantification for a randomly selected
case where θ∗ = (3, 3, 3, 3) and SNR = 5. (a): An example of
prediction with estimation uncertainty. Elements of Y[1::] are
sorted for visualization. (b): Empirical predictive distributions
from BayTensor MCMC for randomly selected elements from

Ynew with the simulation truths shown as red lines.

given as continuous variables, with a higher value denoting
a more obvious characteristic. The proposed approach is ap-
plied to predict the 73 attributes from a given facial image
X. In this work, we use the frontalized version of facial im-
ages (Hassner et al., 2015), which show only forward-facing
faces obtained by rotating, scaling, and cutting original fa-
cial images. The frontalized images are highly aligned, al-
lowing for appearances to be easily compared across faces.
Each frontalized image contains 90 × 90 pixels, with each
pixel giving color intensities for red, green, and blue, result-
ing in a 90 × 90 × 3 tensor for each image. We randomly
sample 1000 images. Thus the predictor tensor X is of di-
mensions 1000×90×90×3, and the response tensor Y is of
dimensions 1000 × 73. We center the tensor for each image

by subtracting the mean of tensors for all images. Another
randomly-sampled 1000 images are used as a validation set,
in other words, Xnew is of dimensions 1000 × 90 × 90 × 3,
and Ynew is of dimensions 1000× 73.

We apply the BayTensor MCMC in Algorithm 1 and
BayTensor Fast in Algorithm 2 to the dataset and conduct
inference. For comparison, we also apply the CP method
proposed by Lock (2018) to the same dataset. For the CP
method, we choose R = 15 and λ = 105 since these val-
ues yielded the best prediction performance, as reported in
Lock (2018). BayTensor MCMC estimates the dimension of
the core tensor based on the posterior mode to be (5, 2, 3, 5)
with a total of 1154 parameters, resulting in an RPE of
0.375. And BayTensor Fast yields an RPE of 0.446. In con-
trast, the CP method has 3840 parameters and results in a
higher RPE, 0.477. To summarize, the proposed Bayesian
tensor-on-tensor regression approach is able to reduce pre-
dictive errors with a smaller number of parameters due to
the flexibility of the Tucker decomposition that permits dif-
ferent orders along different modes.

Next we report the prediction uncertainty, which is a nat-
ural byproduct of the proposed Bayesian framework. We
collect 500 post-burn-in MCMC samples and compute the
posterior predictive distribution along with credible inter-
vals for each of the 73 attributes for each image. The em-
pirical coverage rate for 95% credible interval is 0.930, and
for 90% credible interval is 0.889. Figure 4 shows an exam-
ple of a test image, and plots the corresponding posterior
predictive values for four randomly-selected characteristics.

Figure 4. An example of a test image and the corresponding
posterior predictive values for four selected characteristics.

7.2 Utrecht multi-person motion (UMPM)
data

We then apply the proposed Bayesian tensor-on-tensor
regression model, with b = 0.05, to the multi-person motion
(UMPM) benchmark (Van der Aa et al., 2011) that con-
tains temporally synchronized video sequences from multi-
ple viewpoints and human motion capture data. Each video
is of length 30 to 60 seconds, with resolution of 644 × 484
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pixels at 50 fps (frames per second). Motion capture (Mo-
Cap) data contain 3D positions of 37 markers at 100 fps for
each subject of interest.

To evaluate the performance of our model on 3D motion
data, we consider two scenarios, namely ‘chair’ and ‘triangle’
from the UMPM dataset. In the scenario ‘chair’, we have a
sequence of 2570 sample images in which the subject of in-
terest starts walking in a circle, finds the chair, sits on the
chair and stands up multiple times with different postures.
In the scenario ‘triangle’, we have a sequence of 2471 sample
images in which the subject walks by following the path of
a triangle within a circular area. In our data analysis, the
input data was a grayscale image sequence from the front
camera with resolution downsized to 32×24 pixels, forming
a 3-order predictor tensor (i.e. frames × width × height).
The response data containing 3D positions of 37 markers is
first downsampled to 50fps to match the video, and is then
presented as a 3-order tensor (i.e. samples × 3D position
× markers). For each scenario, we run 10 repeated experi-
ments, and randomly sample 200 images from the sequence
in each experiment to form the predictor tensor data X of
dimensions 200× 32× 24 and response tensor data Y of di-
mensions 200 × 3 × 37. The remaining images are used as
testing data Xnew and Ynew.

We apply BayTensor MCMC, BayTensor Fast, and the
CP method to the datasets. For scenario ‘chair’, the mean
prediction RPE of BayTensor MCMC is 0.176 (sd: 0.009)
while that of BayTensor Fast and the CP method are 0.206
(sd: 0.053) and 0.254 (sd: 0.064) respectively. The mean
number of parameters for BayTensor MCMC is 752 (sd:
58), for BayTensor Fast, the number is 798 (sd: 132), and
for the CP method, with R = 10, the number of parame-
ters is 960. For scenario ‘triangle’, BayTensor MCMC yields
a mean RPE of 0.243 (sd: 0.049) with the mean number
of parameters being 685 (sd: 127). BayTensor Fast, with
the mean number of parameters being 798 (sd: 132), has a
slightly larger RPE of 0.252 (sd: 0.028). In contrast, the CP
method, with R = 10, has 960 parameters and results in a
worse RPE, 0.346 (sd: 0.049). To summarize, with a smaller
number of estimating parameters, the proposed Bayesian
tensor-on-tensor regression model is able to yield smaller
predictive errors compared to the CP method. And this im-
provement comes from the flexibility of Tucker decomposi-
tion.

To demonstrate the predictive uncertainty, we generate
500 post-burn-in posterior samples, produce the empirical
posterior predictive distribution of 3D position for each of
the 37 markers, and calculate the symmetric credible inter-
vals. The empirical coverage rate for 95% credible interval
is 0.957 for scenario ‘chair’, and 0.931 for scenario ‘triangle’.
Figure 5 shows an example of estimation results for 3D po-
sition of the #3 marker by BayTensor MCMC method with
95% credible intervals, BayTensor Fast, and the CP method.

Figure 5. Predictions of x,y,z-position of marker 3 by
Bayesian tensor-on-tensor regression method with 95%

credible intervals, the fast computing method, and the CP
method. The underlying truths are shown in red.

8. DISCUSSION

We developed a Bayesian tensor-on-tensor regression
model to predict one tensor response from another tensor
predictor, building upon the flexible Tucker decomposition
of the coefficient tensor so that the response tensor and pre-
dictor tensor can have different dimensions in the core ten-
sor. For posterior inference, we proposed an efficient MCMC
algorithm to simultaneously estimate the model dimension
and model parameters. In addition, we developed an ultra-
fast computing algorithm wherein the MAP estimators of
model parameters are computed given the model dimen-
sion, and then an SA algorithm is used to find the opti-
mal model dimension. Both simulation studies and real data
analyses show that the performance of our Bayesian tensor-
on-tensor regression model benefits from the flexibility in
the core tensor structure compared to alternative methods.
And the fast computing algorithm yielded comparable pre-
diction results to the MCMC sampler, meanwhile saved a
significant amount of computing time. As the fast comput-
ing algorithm is only guaranteed to converge to a local opti-
mum, in practice it can be repeatedly applied with different
initial values to search for the global optimum. To our best
knowledge, this work represents the first effort in literature
to simultaneously estimate the model dimension and pa-
rameters in tensor-on-tensor regression setup under a fully
Bayesian framework.

There are several interesting future directions. First, in-
stead of assigning normal priors to factor matrices, the
proposed framework can easily incorporate other priors,
such as sparsity-inducing priors (Guhaniyogi et al., 2017;
Miranda et al., 2018), for applications where the sparsity
is desired. More general covariance structures for E will also
be considered. Second, this work only considers one tensor
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predictor. Some applications may require to predict one ten-
sor response from multiple tensor predictors or mixed-type
predictors including tensors, matrices, and vectors. We will
extend the proposed model to handle more flexible predic-
tors. Third, the proposed BayTensor Fast algorithm pro-
vides a general algorithmic framework for estimating the
model dimension as well as model parameters. In this work,
we consider the SA algorithm and BIC. As a future direc-
tion, we plan to explore alternative optimization methods
beyond the SA and target functions beyond the BIC. Fi-
nally, the computational cost of the proposed MCMC sam-
pler comes as a price for prediction accuracy and uncertainty
quantification compared to the proposed fast computing al-
gorithm. To improve the efficiency of posterior computation,
we plan to take advantage of certain advanced MCMC tech-
niques, e.g., stochastic variational inference (Hoffman et al.,
2013) and pseudo-marginal Metropolis-Hastings algorithms
(Andrieu and Roberts, 2009).

APPENDIX

A.1 A brief review of matrix Kronecker
product

The Kronecker product is a matrix operation that is im-
portant in showing posterior distribution of parameters in
this paper, and we will briefly review it here.

The Kronecker product of matrices A ∈ RI×J , and B ∈
R

K×L is denoted by A⊗B. And the result is of size (IK)×
(JL) defined by

A⊗B =

⎡
⎢⎢⎢⎣
a11B a12B · · · a1JB
a21B a22B · · · a2JB
...

...
. . .

...
aI1B aI2B · · · aIJB

⎤
⎥⎥⎥⎦ .

Some of the properties of Kronecker product are proved use-
ful for this paper. See the detailed proofs of these properties
in Kolda (2006)

(A⊗B)(C⊗D) = AC⊗BD.

Let X ∈ R
I1×I2×···×IN , and N = {1, · · · , N}. Let A(n) ∈

R
In×Jn be a sequence matrices for all n ∈ N . Let the ordered

sets R = {r1, · · · , rL} and C = {c1, · · · , cM} be a partition
of N , then if

X = Y×1 A(1) ×2 A(2) · · · ×N A(N)

we have

X(R×C) =
(
A(rL) ⊗ · · · ⊗A(r1)

)
Y(R×C)

×
(
A(cM ) ⊗ · · · ⊗A(c1)

)T
.

Consequently, if A(n) ∈ RIn×Jn for all n ∈ N , then for any
specific n ∈ N if we have

X = Y×1 A(1) ×2 A(2) · · · ×N A(N),

and then

X(n) = A(n)Y(n)

×
(
A(N) ⊗ · · · ⊗A(n+1) ⊗A(n−1) ⊗ · · · ⊗A(1)

)T
.

(22)

A.2 Proof for equation (6)

By properties of n-mode product of tensor and Tucker
decomposition, we have

B = G×2U(2) · · ·×LU(L)×L+1V(1) · · ·×L+MV(M)×1U(1).

Let B(−) denote G×2 U(2) · · · ×L U(L) ×L+1 V(1) · · · ×L+M

V(M), then B(−) ∈ R
R1×P2×···×PL×Q1×···×QM , and

B = B(−) ×1 U(1).

Therefore,

B[p1,··· ,pL,q1,··· ,qM ] =

R1∑
r1=1

(
(B(−))[r1,p2,··· ,pL,q1,··· ,qM ]U(1)r1p1

)
.

And

Ŷ[n,q1,··· ,qM ] = (〈X,B〉L)[n,q1,··· ,qM ]

=

P1∑
p1=1

· · ·
PL∑

pL=1

B[p1,··· ,pL,q1,··· ,qM ]X[n,p1,··· ,pL]

=

P1∑
p1=1

· · ·
PL∑

pL=1

R1∑
r1=1

(
(B(−))[r1,p2,··· ,pL,q1,··· ,qM ]

× U(1)r1p1
X[n,p1,··· ,pL]

)
=

R1∑
r1=1

P1∑
p1=1(

P2∑
p2=1

· · ·
PL∑

pL=1

(B(−))[r1,p2,··· ,pL,q1,··· ,qM ]X[n,p1,··· ,pL]

)
U(1)r1p1

=

R1∑
r1=1

P1∑
p1=1

(
〈B(−),X〉P2,··· ,PN

)
[n,p1,r1,q1,··· ,qM ]

U(1)r1p1
.

And further,

vecŶ = C(R×C) × vecU(1).

If we denote the contracted product of 〈B(−),X〉P2,··· ,PN

by a new tensor called C, then tensor C ∈
R

R1×N×P1×Q1×···QM . And matricize tensor C to
C(R×C) ∈ R

N
∏M

m=1 Qm×R1P1 , where R = {N,Q1, · · · , QM},
and C = {R1, P1}. We have

vecY = C(R×C) × vecU(1) + vecE.
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A.3 Proof for equation (8)

We denote tensor D(−) = G ×1 U(1) · · · ×L U(L) ×L+2

V(2) · · · ×L+M V(M). And then the contracted product of
tensor D(−) and X is a new tensor denoted as D. Then

B = D(−) ×L+1 V(1) .

Then

B[p1,··· ,pL,q1,··· ,qM ] =

S1∑
s1=1

D(−)[p1,··· ,pL,s1,q2,··· ,qM ]
V(1)s1q1 ,

and

Ŷ[n,q1,··· ,qM ] = (〈X,B〉L)[n,q1,··· ,qM ]

=

P1∑
p1=1

· · ·
PL∑

pL=1

B[p1,··· ,pL,q1,··· ,qM ]X[n,p1,··· ,pL]

=

P1∑
p1=1

· · ·
PL∑

pL=1

S1∑
s1=1

(
(D(−))[p1,··· ,pL,s1,q2,··· ,qM ]

× V(1)s1q1X[n,p1,··· ,pL]

)
=

S1∑
s1=1

P1∑
p1=1

· · ·
PL∑

pL=1(
(D(−))[p1,··· ,pL,s1,q2,··· ,qM ]X[n,p1,··· ,pL]

)
V(1)s1q1 .

(23)

By equation (23), we have

(24) Ŷ = D×L+1 V(1).

Combine (22) and equation (24) resulting in

Y(2) = V(1) × (D(R×C))
T + E(2),

where Y(2) ∈ RQ1×N
∏M

m=2 Qm is the matricization of ten-

sor Y and D(R×C) ∈ R
N

∏M
m=2 Qm×S1 is the matricization of

tensor D.

A.4 Conditional posterior distributions given
training fraction b

Given the dimension θ = (R1, · · · , RL, S1, · · · , SM ) of
the core tensor G, and the training fraction b, we first de-
rive the full conditional posterior distributions of {U(l)}Ll=1,
{V(m)}Mm=1, G, σ2 in closed forms. Without loss of gener-
ality, we first derive the full conditional posterior distribu-
tion of U(1). The full conditional posterior distributions of
{U(2), · · · ,U(L)} can be derived in the same manner.

By equation (6), we have

vecY = C(R×C) × vecU(1) + vecE ,

where R = {N,Q1, · · · , QM}, and C = {R1, P1}. And com-
bined with the idea that U(1) is from a distribution propor-

tional to p(Y | {U(l)}Ll=1, {V(m)}Mm=1,G, σ2,θ)b × p(U(1) |

θ), we have, the posterior distribution of vecU(1) given all
other parameters and b is normal distribution. That is

(25) vecU(1) ∼ N(μ′
U ,Σ

′
U )

where,

Σ′
U =

(
b× C

T
(R×C)C(R×C)

σ2
+Σ−1

U

)−1

,

μ′
U = Σ′

U

(
b× C

T
(R×C)vecY

σ2
+Σ−1

U μU

)
.

We then derive the conditional posterior distributions of
V(m) given σ2, {U(l)}Ll=1, V(k) for k �= m, and G. Without
loss of generality, we derive the full conditional posterior
distribution of V(1) below.

Denote the contracted product of the tensor G ×1

U(1) · · · ×L U(L) ×L+2 V(2) · · · ×L+M V(M) and tensor X

by a new tensor D, where D ∈ R
N×S1×Q2×···×QM . We then

matricize D into a matrix D(R×C) ∈ R
N

∏M
m=2 Qm×S1 and

write

(26) Y(2) = V(1) × (D(R×C))
T + E(2),

where Y(2) ∈ RQ1×N
∏M

m=2 Qm is the matricization of tensor

Y. Let Ỹ = Y
T
(2), given V(1) follows a normal distribution

with a diagonal covariance matrix, we can rewrite (26) as

vecỸ =
(
IQ1 ⊗ D(R×C)

)
× vecVT

(1) + vec
(
E(2)

)T
,

where IQ1 denotes an identity matrix of size Q1. Given the
prior distribution of vecV(1) is a normalN(μV ,ΣV ) with di-
agonal ΣV , the prior distribution of vecVT

(1) is also a normal

distribution N(μ̃V , Σ̃V ) with a diagonal covariance matrix.
Then the full conditional posterior distribution of vecV(1)

T

is also normally distributed:
(27)

p(vecVT
(1) | vecY,X, σ2,U(l),V(m) m �= 1) ∼ N(μ̃

′

U , Σ̃
′

U ),

where

Σ̃
′

V =

(
b×

(
IQ1 ⊗ D(R×C)

)T (
IQ1 ⊗ D(R×C)

)
σ2

+ Σ̃−1
V

)−1

μ̃
′

V = Σ̃
′

V

(
b×

(
IQ1 ⊗ D(R×C)

)T
vecỸ

σ2
+ Σ̃−1

V μ̃V

)
.

(28)

By analogous procedures, we have the posterior distribu-
tion of vecG(R×C) is also normal distribution with

μ′
G = Σ′

G

(
(IS ⊗ (X(1)U))T (ΣỸ)−1(b× vecỸ) +Σ−1

G μG

)
Σ′

G =(
b× (IS ⊗ (X(1)U))T (ΣỸ)−1(IS ⊗ (X(1)U)) + (ΣG)

−1
)−1

,

(29)
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where IS denotes an S × S identity matrix with S =∏M
m=1 Sm. And for σ2, the posterior given all other param-

eters and b also follows inverse gamma distribution. That
is

(30) σ2 ∼ IG(α′, β′)

with α′ = α + b×NQ
2 , β′ = β +

b×‖Y−〈X,B〉L‖2
F

2 , and Q =∏M
m=1 Qm.

A.5 Proof for equation (15)

The Fractional Bayes Factor, Eq(11) of O’Hagan (1995),
is given by

Bb(Y) =

∫
p(ξ̃ | θ̃)p(Y | ξ̃, θ̃)dξ̃∫
p(ξ̃ | θ̃)p(Y | ξ̃, θ̃)bdξ̃︸ ︷︷ ︸

(∗∗)

×
∫
p(˜̃ξ | θ(t−1))p(Y | ˜̃ξ,θ(t−1))bd˜̃ξ∫
p(˜̃ξ | θ(t−1))p(Y | ˜̃ξ,θ(t−1))d˜̃ξ

.

We note that

(**) =

∫ (∗∗∗)︷ ︸︸ ︷
p(ξ̃ | θ̃)p(Y | ξ̃, θ̃)b p(Y | ξ̃, θ̃)(1−b)dξ̃∫

p(ξ̃ | θ̃)p(Y | ξ̃, θ̃)bdξ̃
.

By similar techniques in O’Hagan (1995), we can rewrite
p(Y | ξ̃, θ̃)b as p(Y′ | ξ̃, θ̃) that is the likelihood based on Y

′

which is the training proportion b of data Y. And rewrite
(***) as

(***) = p(ξ̃ | θ̃)p(Y′ | ξ̃, θ̃)

= p(ξ̃ | Y′, θ̃)

∫
p(ξ̃ | θ̃)p(Y′ | ξ̃, θ̃)dξ̃

= p(ξ̃ | Y′, θ̃)

∫
p(ξ̃ | θ̃)p(Y | ξ̃, θ̃)bdξ̃ .

Then Bb(Y) becomes

(31) Bb(Y) =

∫
p(ξ̃ | Y′, θ̃)p(Y | ξ̃, θ̃)(1−b)dξ̃∫

p(˜̃ξ | Y′,θ(t−1))p(Y | ˜̃ξ,θ(t−1))(1−b)d˜̃ξ
.

And (*) in (15) is evaluating the Fractional Bayes Factor

Bb(Y) at one sample of ξ̃ and ˜̃ξ instead of integrating out
as in (31).

A.6 More general covariance structures for
prior distributions and noise

In the main manuscript, we assign normal priors with
diagonal covariance matrices for {U(l)}Ll=1, {V(m)}Mm=1, G,
and show that the full conditional posterior distributions can
be derived in closed-forms. When the covariance matrices,
ΣU , ΣV , and ΣG have general structures, we can still derive

the full conditional posteriors in closed-forms by rearranging
the elements of covariance matrices according to the way we
unfold matrices U,V and tensor G. For example, given that
the prior of vecV(1) is a normal distribution with arbitrary
covariance matrix ΣV , to update vecVT

(1), we need the co-

variance matrix of vecVT
(1) by rearranging the elements of

ΣV , and then the posterior distribution of vecVT
(1) is given

in the same formula as shown in equations (9) and (10).
Similarly, to update G, we need the covariance matrix of
vecGR×C , denoted as Σ̃G, which can be accessed by rear-
ranging the elements of ΣG, the covariance matrix of vecG.

For the noise term vecE, we assume that vecE follows
a normal distribution with a diagonal covariance matrix
σ2INQ in the main manuscript. Here we consider an alter-
native construction: vecE ∼ N(0,ΣE) with ΣE = Σ ⊗ IN
in the form of Kronecker product, and an Inverse-Wishart
prior to Σ, i.e., Σ ∼ IW (Ψ, ν). Under such a prior setup,
the posterior updates of vecU(l), vecV(s), vecG, and Σ are
still in closed forms.

Specifically, the full conditional posterior distribution of
vecU(1) is normally distributed:

p(vecU(1) | vecY,X,ΣE ,V(m),U(l) l �= 1) ∼ N(μ′
U ,Σ

′
U ),

where

Σ′
U =

(
C

T
(R×C)Σ

−1
E C(R×C) +Σ−1

U

)−1

,

μ
′

U = Σ′
U

(
C

T
(R×C)Σ

−1
E vecY+Σ−1

U μU

)
.

And the full conditional posterior distribution of vecV(1)
T

is normally distributed:

p(vecVT
(1) | vecỸ,X,ΣE ,U(l),V(m) m �= 1) ∼ N(μ̃

′

V , Σ̃
′

V ),

where

Σ̃
′

V =
((

IQ1 ⊗ D(R×C)
)T

Σ̃−1
(
IQ1 ⊗ D(R×C)

)
+ Σ̃−1

V

)−1

,

μ̃
′

V = Σ̃
′

V

((
IQ1 ⊗ D(R×C)

)T
Σ̃−1vecỸ + Σ̃−1

V μ̃V

)
,

and Σ̃ is the covariance matrix of vec
(
E
T
(2)

)
by rearranging

elements of ΣE .
The derivation of the full conditional posterior of

vecG(R×C) is relatively more complex compared to the pos-
teriors of U and V. Starting from

vec ˜̃Y = (IS ⊗ (X(1)U))vecG(R×C) + vec ˜̃E ,

where ˜̃E = E(1)V(VTV)−1, we can write vec ˜̃E =((
(VTV)−1VT

)
⊗ IN

)
vecE. Then the covariance matrix of

vec ˜̃E becomes

˜̃Σ = ṼΣEṼ
T ,
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Table A.1. Mean RPE with SD on uncorrelated-t data

RPE (SD) BayTensor MCMC BayTensor Fast CP Method OLS Method SAS Method HS Method

θ∗ = (4, 4, 2, 2), SNR=2 0.353 (0.017) 0.374 (0.097) 0.407 (0.037) 1.019 (0.029) 0.968 (0.024) 1.058 (0.137)

θ∗ = (3, 3, 3, 3), SNR=2 0.344 (0.004) 0.350 (0.016) 0.415 (0.032) 1.014 (0.032) 0.958 (0.025) 1.109 (0.281)

θ∗ = (4, 4, 2, 2), SNR=5 0.173 (0.002) 0.208 (0.125) 0.235 (0.035) 0.747 (0.028) 0.949 (0.030) 1.104 (0.227)

θ∗ = (3, 3, 3, 3), SNR=5 0.172 (0.001) 0.182 (0.038) 0.256 (0.038) 0.747 (0.024) 0.931 (0.035) 1.173 (0.388)

Table A.2. Core tensor dimension recovery and number of model parameters on uncorrelated-t data

BayTensor MCMC BayTensor Fast

Dimension Recovery # Parameters (SD) Dimension Recovery # Parameters (SD)

θ∗ = (4, 4, 2, 2), SNR=2 72% 205 (19) 42% 188 (29)

θ∗ = (3, 3, 3, 3), SNR=2 96% 218 (6) 58% 205 (26)

θ∗ = (4, 4, 2, 2), SNR=5 90% 213 (10) 68% 195 (31)

θ∗ = (3, 3, 3, 3), SNR=5 100% 219 (0) 82% 213 (24)

where Ṽ =
((
(VTV)−1VT

)
⊗ IN

)
. The full conditional

posterior distribution of vecG(R×C) is a normal distribution
with

μ̃
′

G = Σ̃
′

G

(
(IS ⊗ (X(1)U))T ˜̃Σ−1vec ˜̃Y + Σ̃−1

G μ̃G

)
,

Σ̃
′

G =
(
(IS ⊗ (X(1)U))T ˜̃Σ−1(IS ⊗ (X(1)U)) + (Σ̃G)

−1
)−1

.

Lastly, the full conditional posterior of Σ is an Inverse-
Wishart distribution with ν̃ = N + ν, and Ψ̃ = STS + Ψ
where S = Y(1) − X(1)B(P×Q).

A.7 Simulation results: uncorrelated-t setup

We present the detailed results under the proposed
BayTensor MCMC, BayTensor Fast, and four alternative
methods (including the CP method, the OLS method, the
SAS method, and the HS method) to datasets under the
uncorrelated-t setup.

The prediction RPE results are presented in Table A.1.
The RPE results under Baytensor MCMC and BayTensor
Fast are comparable in all cases. And both of them have bet-
ter RPEs than the CP method followed by the SAS method,
and the OLS method. The HS performs the worst in terms of
yielding the highest RPEs in all cases. And when the signal
to noise ratio increases from 2 to 5, the prediction accuracies
are improved under all methods, except for the HS method.

Table A.2 shows the empirical probabilities of dimension
recovery and the average numbers of parameters required
by BayTensor MCMC and BayTensor Fast in 50 replicated
experiments. In all 4 cases, BayTensor MCMC and BayTen-
sor Fast both require a smaller number of parameters than
the CP method. And in terms of recovering the dimension
of the core tensor, BayTensor MCMC has higher empirical
probabilities of recovering the true dimension than BayTen-
sor Fast in all cases. And the recovering probabilities in the
cases where θ∗ = (3, 3, 3, 3) are higher than those in cases
where θ∗ = (4, 4, 2, 2) for both methods.

We also observe that the RPEs under uncorrelated-t se-

tups are larger than those under uncorrelated-normal se-

tups for the BayTensor methods and the CP method. This

is expected because the fitting model is different from the

data generation model. However, the magnitudes of RPE in-

crease under BayTensor algorithms are small. Moreover, the

dimension recovery rates and number of parameters are also

similar to those under uncorrelated-normal setups. These re-

sults indicate that the proposed BayTensor algorithms have

reasonably good performance when the fitting model is mis-

specified.

A.8 Traceplots of the estimated number of
parameters associated with θ in
simulation study

We plot the estimated number of parameters associ-

ated with θ(t) versus iteration t in the first 100 itera-

tions of BayTensor MCMC algorithm for some randomly-

selected experiments under the uncorrelated-normal simu-

lation setup in Figure A.1, and under the correlated setup

in Figure A.2.

A.9 Full simulation study results of CP
method with different ranks

For each case of the simulation study, we tried the CP

method with CP-rank R values from 1 to 6. Note that when

R = 5, 6, the total number of parameters in CP method

are 230 and 276 respectively which are larger than the true

number of parameters (212 for θ∗ = (4, 4, 2, 2) cases and

219 for θ∗ = (3, 3, 3, 3) cases). We calculate the RPE results

with different R values for all 50 repeated experiments under

all simulation setups. And means and standard deviations

of RPEs averaging over the 50 repeated experiments for all

8 simulation setups are shown in Table A.3.
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Figure A.1. The estimated number of parameters associated with θ(t) versus iteration t in the first 100 iterations of
BayTensor MCMC algorithm for some randomly-selected experiments under the uncorrelated-normal simulation setup. The

true number of parameters is shown by the red line. (a): SNR = 2, θ∗ = (4, 4, 2, 2). (b): SNR = 2, θ∗ = (3, 3, 3, 3). (c): SNR
= 5, θ∗ = (4, 4, 2, 2). (d): SNR = 5, θ∗ = (3, 3, 3, 3).

Table A.3. Mean RPE with SD for the CP method with different R values

RPE (SD) R = 1 R = 2 R = 3 R = 4 R = 5 R = 6

Uncorrelated Data

θ∗ = (4, 4, 2, 2), SNR=2 0.771(0.102) 0.627(0.087) 0.529(0.095) 0.463(0.061) 0.409(0.036) 0.377(0.014)

θ∗ = (3, 3, 3, 3), SNR=2 0.780(0.081) 0.623(0.061) 0.535(0.048) 0.466(0.038) 0.422(0.024) 0.391(0.016)

θ∗ = (4, 4, 2, 2), SNR=5 0.718(0.137) 0.530(0.109) 0.392(0.072) 0.308(0.052) 0.241(0.039) 0.209(0.046)

θ∗ = (3, 3, 3, 3), SNR=5 0.718(0.095) 0.527(0.074) 0.414(0.060) 0.320(0.044) 0.266(0.032) 0.222(0.016)

Correlated Data

θ∗ = (4, 4, 2, 2), SNR=2 0.533(0.152) 0.423(0.095) 0.382(0.043) 0.371(0.021) 0.370(0.011) 0.377(0.014)

θ∗ = (3, 3, 3, 3), SNR=2 0.514(0.120) 0.429(0.070) 0.391(0.037) 0.374(0.019) 0.370(0.010) 0.369(0.007)

θ∗ = (4, 4, 2, 2), SNR=5 0.407(0.170) 0.266(0.104) 0.219(0.056) 0.198(0.034) 0.190(0.014) 0.188(0.006)

θ∗ = (3, 3, 3, 3), SNR=5 0.413(0.187) 0.280(0.085) 0.230(0.047) 0.205(0.026) 0.194(0.015) 0.187(0.006)
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