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The development of modern sequencing technologies pro-
vides great opportunities to measure gene expression of mul-
tiple tissues from different individuals. The three-way vari-
ation across genes, tissues, and individuals makes statis-
tical inference a challenging task. In this paper, we pro-
pose a Bayesian multi-way clustering approach to cluster
genes, tissues, and individuals simultaneously. The pro-
posed model adaptively trichotomizes the observed data
into three latent categories and uses a Bayesian hierar-
chical construction to further decompose the latent vari-
ables into lower-dimensional features, which can be inter-
preted as overlapping clusters. With a Bayesian nonpara-
metric prior, i.e., the Indian buffet process, our method
determines the cluster number automatically. The util-
ity of our approach is demonstrated through simulation
studies and an application to the Genotype-Tissue Ex-
pression (GTEx) RNA-seq data. The clustering result re-
veals some interesting findings about depression-related
genes in human brain, which are also consistent with bi-
ological domain knowledge. The detailed algorithm and
some numerical results are available in the online Sup-
plementary Material, http://intlpress.com/site/pub/files/
supp/sii/2024/0017/0002/sii-2024-0017-0002-s001.pdf.
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1. INTRODUCTION

High-throughput sequencing technologies such as RNA-
sequencing and microarrays have made it possible to mea-
sure the activity or expression of thousands of genes at once.
Gene expression data are useful for identifying molecular
subgroups, which can potentially help scientists understand
signaling pathways better and ultimately design targeted
treatments for genetic diseases [50, 8, 41]. A commonly used
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approach for identifying novel molecular subtypes is cluster-
ing, which is an unsupervised method for finding homoge-
neous subgroups with similar patterns of features and/or
observations from heterogeneous data [52, 21, 12].

Gene expression data often exhibit heterogeneity across
both features (genes) and observations (tissues or subjects).
Hence, biclustering [20], which jointly clusters both features
and observations, has become popular for analyzing gene
expression data. Compared to clustering methods that clus-
ter observations or features only, biclustering methods can
relate a subset of genes to a certain group of subjects, which
enhances interpretation. [10] was one of the early works to
apply the method of biclustering to gene expression data.
Subsequently, many biclustering models were proposed and
found successful applications in RNA-sequencing and mi-
croarray data, including [28] for a plaid model, [5] for a com-
bination method on row and column clustering, [29] for reg-
ularized singular value decomposition (SVD), among many
others. For microbiome data, [53] developed a biclustering
method via an identifiable Bayesian multinomial matrix fac-
torization model, which was extended to the multi-omic data
[54].

One common thread of biclustering approaches is that
they are only applicable to matrices. However, this work is
motivated by a brain-tissue gene expression dataset from the
Genotype-Tissue Expression project [GTEx, 31], which con-
tains gene expression measurements across subjects, brain
tissues, and genes, and hence is a three-way tensor. To si-
multaneously characterize the heterogeneity along all the
dimensions of a tensor, a multi-way clustering method is
required.

Several attempts have been made to deal with general
high-order tensors for the purpose of clustering. [48] pro-
posed a tensor block model as the form of Tucker decompo-
sition [46] where the core tensor represents the mean of sub-
groups and the factor matrices represent the cluster mem-
berships. The idea of using factor matrices of Tucker de-
composition to represent the cluster memberships was fur-
ther exploited by [11], where the authors proposed to re-
lax the original combinatorial optimization problem to its
convex surrogate for computational efficiency. [18] devel-
oped a high-order spectral clustering (HSC) method and ex-
tended the Lloyd algorithm to a high-order version (HLloyd)
to recover the membership matrices in the tensor block
model. Alternative to the Tucker decomposition, the CAN-
DECOMP/PARAFAC (CP) decomposition [9, 19, 23] has
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also been applied for three-way tensor clustering [47]. Al-
though these methods have been proven useful, there still
exist some drawbacks. First, they do not allow overlapping
clusters, which, however, are quite plausible for gene expres-
sion data. For example, genes can be active in more than one
biological process by regulating or coding proteins through
multiple pathways [2]. Second, a pre-specified number of
clusters is often required for existing methods. The number
of clusters is, however, usually unknown in real-word ap-
plications. Finally, gene expression data are often observed
with high level of noises as well as missing values due to
technical limitations. Ignoring these features of gene expres-
sion data may lead to erroneous (mixing up noises with the
true expression variations) and/or inefficient (removing ob-
servations with missing values) scientific discoveries.

In this work, we propose a Bayesian multi-way clustering
(BayMC) approach that addresses all the aforementioned
limitations of existing tensor clustering methods. To be ro-
bust to the high-level noises of the gene expression data,
a latent categorical tensor is introduced to adaptively tri-
chotomize gene expression into one of the three categories,
namely, over/normal/underexpression, coded as 1/0/−1, re-
spectively, for each gene, tissue, and subject. To simultane-
ously cluster genes, tissues, and subjects, the latent ternary
categorical tensor is decomposed into three sparse lower-
dimensional feature matrices, each of which can be inter-
preted as cluster indicators along one of the three dimen-
sions of the tensor. This decomposition can be thought of
as a probabilistic CP decomposition. As a by-product, the
low-dimensionality of the feature matrices allows natural
handling of missing data. The low-dimensional feature ma-
trices are modeled hierarchically by the Indian Buffet Pro-
cess (IBP) prior, the beta-Bernoulli prior, and the Dirichlet-
categorical prior. This set of prior specifications gives rise to
the desirable overlapping clusters and eliminates the need to
fix the number of clusters a priori.

The rest of this paper is organized as follows. The prelimi-
nary knowledge of tensor and IBP is introduced in Section 2.
We present our method in Section 3, including the proposed
multi-way clustering model, the discussion on model identi-
fiability, and the posterior inference. In Sections 4 and 5, we
respectively demonstrate the utility of our model with sim-
ulation studies and the analysis of GTEx RNA-seq dataset.
This paper is summarized in Section 6 with a brief conclud-
ing remark.

2. NOTATIONS AND PRELIMINARIES

In this section, we briefly introduce the notations and
preliminaries of tensor and IBP, which will be used to build
our multi-way clustering model hierarchically.

2.1 Tensor

A tensor is a multi-dimensional array, and the order K of
a tensor is its number of dimensions, also known as ways or

modes [25]. For a K-way tensor X ∈ R
I1×I2×···×IK , we let

xi1i2...iK denote the (i1, i2, . . . , iK)-th element of X, ik =
1, . . . , Ik, k = 1, . . . ,K, where (i1, i2, . . . , iK) is called the
access indices.

Rank-one tensors. We say a K-way tensor X ∈
R

I1×I2×···×IK is of rank one if it can be written as the outer
product of K vectors, i.e.

X = a(1) ◦ a(2) ◦ · · · ◦ a(K),

where a(k) = (a
(k)
1 , . . . , a

(k)
Ik

)T ∈ R
Ik , k = 1, . . . ,K, and the

symbol ◦ represents the vector outer product. This means
that each element of the tensor is the product of the cor-

responding vector elements, i.e., xi1i2···iK = a
(1)
i1

a
(2)
i2

. . . a
(K)
iK

for ik = 1, . . . , Ik and k = 1, . . . ,K.
CANDECOMP/PARAFAC decomposition. Rank-

one tensors are key components of the CANDE-
COMP/PARAFAC (CP) decomposition, which decomposes
a tensor into a sum of rank-one tensors. More precisely, we
write X ∈ R

I1×I2×···×IK as

X ≈
R∑

r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(K)
r ,

where R is a positive integer and a
(k)
r ∈ R

Ik for k = 1, . . . ,K
and r = 1, . . . , R.

Fibers and matricization. Subarrays of a tensor are
formed when a subset of the access indices is fixed. In par-
ticular, a mode-k fiber of a K-way tensor refers to a vec-
tor defined by fixing all access indices but the one of the
k-th mode. Therefore, the mode-k fibers can be seen as the
higher-order analogue of the rows or columns of a matrix. As
for matricization, it is the process of reordering the elements
of a K-way tensor into a matrix. In particular, the mode-
k matricization of a tensor X ∈ R

I1×I2×···×IK , denoted by
X(k), arranges the mode-k fibers to be the columns of the
resulting matrix. The arrangement follows the original order
of the modes such that the (i1, i2, · · · , iK)-th element of X
maps to the (ik, j)-th element of X(k), where

j = 1 +

K∑
d=1,d�=k

(id − 1)Jd with Jd =

d−1∏
m=1,m �=k

Im.

This process of matricization is also known as unfolding or
flattening.

Matrix Kronecker, Khatri-Rao, and Hadamard
products. The Kronecker product of two generic matrices
A = (aij)I×J ∈ R

I×J and B = (bkl)K×L ∈ R
K×L is de-

noted by A⊗B. The result is a matrix of size (IK)× (JL)
and defined by

A⊗B =

⎡
⎢⎢⎢⎣

a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

⎤
⎥⎥⎥⎦ .
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The Khatri-Rao product is defined as a column-wise Kro-
necker product for two matrices with the same column num-
ber [43]. More precisely, let C = (c1, . . . , cL) ∈ R

I×L and
C ′ = (c′1, . . . , c

′
L) ∈ R

J×L be two generic matrices with
the same number of columns, their Khatri-Rao product
C �C ′ ∈ R

IJ×L is defined as

C �C ′ = [c1 ⊗ c′1 c2 ⊗ c′2 · · · cL ⊗ c′L],

where ⊗ denotes the Kronecker product.

The Hadamard product is the elementwise matrix prod-
uct for the matrices of the same size. Given matrices A and
B, both of size I × J , we let A ∗B denote their Hadamard
product. The product A ∗B is also a matrix of size I × J
and is defined by

A ∗B =

⎡
⎢⎢⎢⎣

a11b11 a12b12 · · · a1Jb1J
a21b21 a22b22 · · · a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI2 · · · aIJbIJ

⎤
⎥⎥⎥⎦ ,

where aij and bij are the (i, j)-th element of A and B,
respectively.

2.2 Indian buffet process

The Indian buffet process [IBP, 17] has been widely used
as a Bayesian nonparametric prior on binary matrices with a
finite number of rows and potentially an unbounded number
of columns. The generative process of IBP is as follows. For
the first row, we select the first Poisson(m) entries to be
1, where m is a hyperparameter. Then sequentially, for the
i-th row, i ≥ 2, we let mr be the column sum of the r-th
column from the current matrix with i − 1 rows. For all r
such that mr > 0, we set the r-th entry of the i-th row to
1 with probability mr/i. Once having exhausted all r such
that mr > 0, we additionally set the next Poisson(m/i)
number of entries to be 1.

The IBP can be represented as an alternative (but equiv-
alent) generative process. We first assume the binary matrix

A = [αir] to be generated has n rows and R̃ columns. Con-

ditional on R̃, αir’s are assumed to be beta-Bernoulli ran-

dom variables, αir|πr
ind∼ Ber(πr) and πr ∼ Beta(m/R̃, 1),

r = 1, . . . , R̃, where m is again a hyperparameter. Marginal-
izing out πr, we can obtain the probability mass function for
A as

(1) p(A) =

˜R∏
r=1

mΓ
(
sr +m/R̃

)
Γ (n− sr + 1)

R̃Γ
(
n+ 1 +m/R̃

) ,

where sr =
∑n

i=1 αir is the sum of the r-th column of A.

We then take R̃ → ∞ and remove the columns where all
the entries are zeros. Let R denote the number of remaining
columns. It can be shown that A follows IBP(m) (without a

specific ordering of columns) such that the probability mass

function (1) can be rewritten as

p(A) =
mR exp(−mHn)

R!

R∏
r=1

Γ (sr) Γ (n− sr + 1)

Γ(n+ 1)
,

where Hn =
∑n

i=1 1/i is the n-th Harmonic number.

Moreover, the conditional probability for αir = 1 is

p
(
αir = 1 | α(−i)r

)
= s(−i)r/n provided s(−i)r > 0, where

α(−i)r is the r-th column of A excluding the i-th row and

s(−i)r is the sum of α(−i)r. The distribution of number of

new columns for each row is Poisson (m/n). These proper-

ties are essential for the posterior inference in Section 3.3.

3. METHOD

3.1 Multi-way clustering model

Suppose the RNA-seq data is collected from G genes

across T tissues and D donors/subjects. We focus on the

log-transformed, centered messenger RNA (mRNA) mea-

surements which are often treated as continuous data with

heavy tails. We denote the obtained mRNA measurement

from the g-th gene, t-th tissue, and d-th donor as ydtg,

d = 1, . . . , D, t = 1, . . . , T , and g = 1, . . . , G. The overall

measurements of gene expression form a three-way tensor of

size D × T × G which is denoted as Y . According to [38],

we use the probability of expression model (POE) to rep-

resent the normalized gene expression measurements as a

mixture of one Gaussian and two uniform distributions. In

other words, for 1 ≤ d ≤ D, 1 ≤ t ≤ T, and 1 ≤ g ≤ G, we

write

(2)

ydtg ∼ I(zdtg = −1)U(ηt+μg − κ−
g , ηt+μg)

+ I(zdtg = 0)N(ηt+μg, σ
2
g)

+ I(zdtg = 1)U(ηt+μg, ηt + μg + κ+
g ),

where the latent categorical variable zdtg = −1, 0, and 1

respectively indicate the case of under-expression, normal,

and over-expression of gene g in the t-th tissue and the d-th

donor. In (2), ηt and μg represent the main effect of the t-

th tissue and g-th gene, respectively. σg is the gene specific

standard deviation of normal component and the parame-

ters κ+
g and κ−

g provide the limits of the uniform compo-

nents of the mixture. We also set min{κ+
g , κ

−
g } > κ0σg with

κ0 > 5 to provide heavier tail probability than the normal

when the deviation away from the mean is not too large.
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The likelihood function is thus derived from (2) as

(3)

p(Y |Z, {ηt}Tt=1, {μg, σ
2
g , κ

−
g , κ

+
g }Gg=1)

=

D∏
d=1

T∏
t=1

G∏
g=1

p(ydtg|zdtg, ηt, μg, σ
2
g , κ

−
g , κ

+
g )

=

D∏
d=1

T∏
t=1

G∏
g=1

(
f−1(ydtg)

I(zdtg=−1)

× f0(ydtg)
I(zdtg=0)f1(ydtg)

I(zdtg=1)
)

where f−1(·), f0(·), and f1(·) are the density functions of
U(ηt+μg − κ−

g , ηt+μg),N(ηt+μg, σ
2
g), and U(ηt+μg, ηt +

μg + κ+
g ), respectively.

We assign the priors on the unknown parameters in (2)
as μg, ηt ∼ N(μ, σ2), κ−

g , κ
+
g ∼ Gamma (aκ, bκ), and σ2

g ∼
IG (aσ, bσ) I(σg < min{κ−

g , κ
+
g }/κ0), where IG (aσ, bσ) is the

inverse-Gamma distribution with parameters aσ and bσ. Us-
ing the mixture model (2) and the priors on its parameters,
the adaptive trichotomization takes into account noises due
to the sequencing errors and the technical instability [38],
and therefore, the latent variable zdtg can be viewed as a
denoised version of the gene expression measurement ydtg.
We denote Z = (zdtg) ∈ {−1, 0, 1}D×T×G.

Although mixture model (2) helps classify the status
of gene g in the t-th tissue and the d-th donor, the ob-
tained Z remains the same dimensions of Y as a three-way
categorical (ternary) tensor. To reduce the dimensionality
and achieve the purpose of clustering, we introduce lower-
dimensional matrices C1 ∈ {0, 1}D×R, C2 ∈ {0, 1}T×R, and
C3 ∈ {−1, 0, 1}G×R to characterize the heterogeneity along
the three modes of Z. In particular, with R setting to be
the number of clusters, which is often much smaller than the
dimensions of Z (i.e., D, T and G), cr1d = 1 represents that
d-th donor is in cluster r and cr1d = 0 otherwise. Similarly,
we can define membership matrices of tissues and genes as
C2 and C3, respectively. Note that C3 is a ternary ma-
trix whose elements take values at {1, 0,−1} to represent
gene over-/normal/under-expression in cluster r. We link
zdtg with C1,C2, and C3 by a multi-class logistic model:

(4)
zdtg ∼ Categorical

{
M−1 exp(θ−dtg),M

−1,

M−1 exp(θ+dtg)
}
,

where M is a normalizing constant and parameters
(θ−dtg, θ

+
dtg) are formulated as

(5)

θ−dtg =

R∑
r=1

cr1dc
r
2tω

−
grI

(
cr3g = −1

)
+ b− and

θ+dtg =

R∑
r=1

cr1dc
r
2tω

+
grI

(
cr3g = 1

)
+ b+.

In (5), parameters ω+
gr and ω−

gr tie the g-th gene to the r-
th cluster and are assumed to be positive for identifiability.
Parameters b+ and b− control the baseline probabilities of
zdtg being +1 and −1, respectively. We denote ω+ ∈ R

G×R,
where its (g, r)-th element is ω+

gr (ω− with ω−
gr analogously)

and B+ ∈ R
D×T×G with all elements being b+ (B− with b−

analogously). Let Θ+ be a tensor of size D × T ×G whose
(d, t, g)-th element is θ+dtg (Θ− with θ−dtg analogously). Fur-

ther set C̃+
3 = ω+ ∗ I(C3 = 1) and C̃−

3 = ω− ∗ I(C3 = −1)
as the Hadamard product of ω+ and ω− respectively with
I(C3 = 1) and I(C3 = −1), where the indicator function
applies on each element of C3. We can then rewrite (5) in a
tensor form,

(6)

Θ− =

R∑
r=1

cr1 ◦ cr2 ◦ c̃3
r− +B− and

Θ+ =

R∑
r=1

cr1 ◦ cr2 ◦ c̃3
r+ +B+,

where cr1, c
r
2, c̃3

r−, and c̃3
r+ are the r-th columns of C1,

C2, C̃
−
3 , and C̃+

3 , respectively. The proposed model (6) has
the same form of CP decomposition but with a nice inter-
pretation of simultaneous clustering of donors, tissues, and
genes, indicated by binary membership matrices C1, C2,
I(C3 = 1), and I(C3 = −1).

Although we focus on three-way tensors because of the
motivating GTEx data, the proposed model (2)–(6) can be
generalized to tensors of higher order (i.e., K-way tensors
with K > 3). To this end, suppose the observed is a K-way
(K > 3) tensor Y of size D1 × D2 × · · · × DK where the
last mode is the main variable of interest (e.g., the gene ex-
pression in the motivating GTEx data). We assume that
each entry of the observed tensor can be represented as
a mixture of three components, namely, abnormally low,
normal, and abnormally high according to the last mode.
We use a latent ternary variable with values in {−1, 0, 1}
to indicate its mixture component as in (2). The member-
ship matrices Ck ∈ {0, 1}Dk×R, k = 1, . . . ,K − 1, and
CK ∈ {−1, 0, 1}DK×R are used to characterize the hetero-
geneity along the modes of Z and to achieve the purpose
of clustering. The link between the ternary tensor and the
membership matrices is a multi-class logistic model just as
in (4) with parameters (θ−d1d2···dK

, θ+d1d2···dK
). These param-

eters can be decomposed similarly as (5) but with K-way
outer products.

The priors in the latent model (5) are assigned as follows.
Each element of C1 is assumed to follow a beta-Bernoulli

distribution, i.e., cr1d
ind∼ Ber(ρ) with ρ ∼ Beta(aρ, bρ).

Matrix C2 follows an IBP, C2 ∼ IBP(m), which au-
tomatically determines the number R of clusters. Note
that the IBP prior can be assigned to either the first
or the second mode. For faster computation, we suggest
assigning it to the mode with a smaller dimension. In
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our application, the number of subjects (the first mode)
is larger than that of tissues (the second mode). There-
fore, we impose the IBP prior on the membership ma-
trix of the second mode. Each element of C3 follows the

Dirichlet-categorical distribution, i.e., cr3g
ind∼ Categorical

(γ) with γ = (γ−1, γ0, γ1) ∼ Dirichlet(ψ−1, ψ0, ψ1). We also
assume independently ω+

gr, ω
−
gr ∼ Gamma (aω, bω), b

+, b− ∼
N

(
μb, σ

2
b

)
, and m ∼ Gamma (am, bm).

3.2 Identifiability

Unlike the matrix decomposition where its uniqueness is
often not guaranteed, the condition to achieve the unique-
ness of the CP decomposition of higher-order tensors is
weaker. Let kC1 , kC2 , k

˜C+
3
, and k

˜C−
3

denote the k-ranks

of matrices C1, C2, C̃
+
3 , and C̃−

3 , respectively. Here, the
k-rank of a generic matrix C is defined as the maximum
value k such that any k columns of C are linearly indepen-
dent, denoted by kC . One commonly-used sufficient condi-
tion for CP decomposition uniqueness, according to [27], is
the Kruskal’s condition, i.e.,

kC1 + kC2 +min{k
˜C+
3
, k

˜C−
3
} ≥ 2R+ 2.

Note that the Kruskal’s condition is sufficient for the unique
CP decomposition of tensor Θ+ (respectively Θ−) into real-

valuedC1,C2, and C̃+
3 (respectively C̃−

3 ). Furthermore, due
to the binary nature ofC1 andC2, we provide an alternative
sufficient condition for the identifiability of our model which
has less restrictions on k-ranks compared with the Kruskal’s
condition.

Proposition 1. For model (6), if there exist integer matri-
ces U1 ∈ Z

R×D and U2 ∈ Z
R×T such that U1C1 = IR and

U2C2 = IR, then C1, C2, and C3 are uniquely identifiable
up to column permutation.

Proof. We present the proof for Θ+; the proof for Θ− can
be obtained similarly. Denote Θ+

(2), B
+
(2) ∈ R

T×(DG) as the

mode-2 unfolding of tensors Θ+ and B+, respectively. Let

(7) C+
−2 = C̃+

3 �C1 ∈ R
DG×R,

where � is the Khatri-Rao product introduced in Sec-
tion 2.1. We then have

(8) Θ+
(2) = C2(C

+
−2)

T +B+
(2) .

According to [53], identifiability holds for C2 and C+
−2 by

the matrix form (8) under the assumption that there ex-
ists an integer matrix U2 ∈ Z

R×T with U2C2 = IR. The
uniqueness of C1 and C+

−1 hold by similar arguments due

to U1C1 = IR, where C+
−1 = C̃+

3 � C2 ∈ R
TG×R. Next,

observed from (7), the identifiability for C̃+
3 also holds

given the uniqueness of C+
−2 and C1. It is because the non-

uniqueness of C̃+
3 only occurs when there exists a column of

C1 to be all zeros according to the definitions of Khatri-Rao
and Kronecker products in Section 2.1, which contradicts
with the assumption U1C1 = IR. Finally, the uniqueness
of C3 can be obtained by noticing that all elements in ω+

are positive and C3 can be equivalently written as sgn(C̃+
3 ),

where sgn(·) applies on each element of C̃+
3 .

Remark 1. The condition used in Proposition 1 is mild
since it can be satisfied, taking U1C1 = IR as an example,
if for any r = 1, · · · , R, there exists d = 1, · · · , D such
that cd = er where cd is the d-th row of C1 and er is a
unit vector with 1 at its r-th entry (in this case, U1 is just a
binary matrix that acts to pick out those R rows of C1). This
implies that, the condition can be satisfied if for any cluster
r, there exists at least one member of this cluster that does
not belong to any other clusters. The identifiability result
of Proposition 1 can be generalized to the general K-way
tensor model. In particular, if there exist integer matrices
Uk ∈ Z

R×Dk such that UkCk = I, k = 1, 2, · · · ,K − 1,
then C1,C2, · · · ,CK are uniquely identifiable up to column
permutations. Its proof is similar to that of 3-way model and
thus omitted.

3.3 Posterior inference

The proposed Bayesian multi-way clustering (BayMC)
model in Section 3.1 includes the following parameters and
hyperparameters

{
C1,C2,C3,Z, {ηt}Tt=1, {μg, σ

2
g , κg}Gg=1,

ω+,ω−,m, ρ,γ, b+, b−
}
.

We will use a Markov chain Monte Carlo (MCMC) algo-
rithm to sample these model parameters from the analytical
intractable posterior distribution.

One important step in the MCMC algorithm is updat-
ing the cluster configuration through IBP construction. The
identities (7) and (8) are very useful in the sampling scheme
since they transfer the CP parameters of a tensor into a
matrix form. Denote cr2,−t as the rth column of C2 with-
out the t-th entry, r = 1, . . . , R and t = 1, . . . , T . For
t = 1, . . . , T , we cycle through the following main steps to
sampleC2. Other parameters can be sampled using Gibbs or
Metropolis-Hasting and the details can be found in Section
S.1.1 of the Supplementary Material.

1. Update existing (non-empty) columns r = 1, . . . , R
of C2. In particular, we sample the binary cr2t, r =
1, . . . , R, from the full conditional distribution,

p(cr2t|·) ∝ p(cr2t|cr2,−t) p(z(2)t|cr2t,C+
−2,C

−
−2, b

+, b−),

where z(2)t is the t-th row of Z(2), C
+
−2 = C̃+

3 � C1,

and C−
−2 = C̃−

3 �C1. In the above, p(cr2t = 1|cr2,−t) =∑
i �=t c

r
2i/T according to the generating process of IBP
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(in Section 2.2), and

p(z(2)t|cr2t,C+
−2,C

−
−2, b

+, b−)

=

D∏
d=1

G∏
g=1

p(zdtg|cr2t,C+
−2,C

−
−2, b

+, b−).

2. Propose new clusters. After all existing columns are
updated, we propose to add new columns. We draw
R∗ ∼ Poi(m/T ). If R∗ = 0, we proceed to the next step.
Otherwise, we propose a set of new parameters for the
new clusters constructed in C∗+

−2 and C∗−
−2 from their

prior distributions. We accept new columns and the
associated new parameters with probability min(1, γ)
with

γ =
p(z(2)t|c2t,1R∗ ,C+

−2,C
−
−2,C

∗+
−2 ,C

∗−
−2 , b

+, b−)

p(z(2)t|c2t,C+
−2,C

−
−2, b

+, b−)
,

where c2t is the t-th row of C2 and 1R∗ is a vector of
length R∗ with each entry being 1. If new columns are
accepted, we increase R to R+R∗.

To summarize the posterior distribution based on the
Monte Carlo samples, we proceed by first calculating the
maximum a posteriori estimate R̂ of R from the marginal
posterior distribution. Conditional on estimated R̂, we first
find the point estimate ofC2 by the following procedure. For

any matrices C2 and C̃2 ∈ {0, 1}T× ̂R, we define a distance

d(C2, C̃2) = minπ D(C2, π(C̃2)), where π(C̃2) denotes a

permutation of the columns of C̃2 and D(·, ·) is the Ham-
ming distance between the two matrices. A point estimator
Ĉ2 of C2 is then obtained as

Ĉ2 = argmin
˜C2

∫
d(C2, C̃2)dp(C2 | data).

The integral as well as the optimization can be approxi-
mated using the available posterior samples. Conditional on
Ĉ2, we continue to run the Markov chain for a while. After-
wards the point estimates of other parameters are obtained
as the posterior means computed from the new Monte Carlo
samples. Similar approaches have been used in [32, 54, 53].

4. SIMULATION

In our simulation study, we compare our BayMC method
with three alternative approaches: (i) a sparse unified ma-
trix factorization [UMF, 54], which is a degenerated matrix
version (i.e., biclustering) of our method, (ii) the HLloyd
method [18], and (iii) the MultiCluster method [47]. Since
HLloyd and MultiCluster both assume each object belongs
to only one cluster while our model allows overlaps, we
set up two simulation cases: overlapped clusters and non-
overlapped clusters for fair comparison.

Data generation. We consider a three-way tensor of
D = 200, T = 15, and G = 15, which has a similar size

to our real data application (in Section 5). The number of
clusters is set to be R = 3. For the overlapped case, the
tissue membership matrix C2 is generated from an IBP
process with m = 1. As for the donor membership ma-
trix C1, elements are generated from Bernoulli distribution
with probability ρ = 0.3. The gene membership matrix C3

are generated from categorical distribution with categories
{−1, 0, 1} and event probabilities p = {0.15, 0.7, 0.15}. We
also set the weight matrices ω+ and ω− to be the same
and denoted as ω below. Note that ω can be regarded as
the term controlling the signal strength of the CP decom-
position. We first set each row of ω to (6.0, 6.5, 7.0) and
will change the values to inspect how the performance will
vary with different levels of signal strength. The results for
various ω’s are presented in Section S.2.1 of the Supple-
mentary Material. Both b− and b+ are set as log 0.1. For
the non-overlapped case, each row of the binary member-
ship matrices C1 ∈ {0, 1}200×3 and C2 ∈ {0, 1}15×3 is in-
dependently generated from a unit-trail multinomial distri-
bution with event probabilities p = (0.3, 0.3, 0.4). As for
C3 ∈ {−1, 0, 1}15×3, we first generate its rows as for C1

and C2, and afterwards we additionally set half of the 1’s
in C3 to be −1 in random. The weight matrix ω and base-
line parameters (b+, b−) are generated as in the overlapped
case. In both cases, the latent indicator tensor Z is then
generated according to (4) and (5). Finally, we generate the
observations ydtg’s through the sampling model, i.e., from
U(−5, 0) when zdtg = −1, from N(0, 1) when zdtg = 0, and
from U(0, 5) when zdtg = 1, for d = 1, . . . , D, t = 1, . . . , T ,
and g = 1, . . . , G. For each case, 50 simulated datasets are
generated independently.

Implementation of methods. To apply our approach,
we run the MCMC algorithm for 5,000 iterations with one
random initial cluster. The first 2,500 iterations are dis-
carded as burn-in and posterior samples are retained every
5th iteration after burn-in. For the HLloyd and MultiCluster
methods, since they need a pre-specified number of clusters,
we plug in the true number of clusters when we apply them.
Furthermore, since MultiCluster only provides three real-
valued matrices from the CP decomposition, we additionally
apply a k-means step on these matrices to obtain the mem-
bership information for the clustering purpose. As for the
matrix form of our method, we transform the original ten-
sor to a matrix by taking the average on the mode of donors.

Comparison of performance. We first summarize the
correct number of clusters estimated by BayMC and UMF.
It shows that our method can estimate the cluster num-
ber accurately at least 94% of the 50 simulated replicates
for two cases while the matrix biclustering UMF only ac-
curately estimates less than 10% of the replicates for the
number of clusters. The failure of biclustering UMF may
because it loses the information of heterogeneity from the
mode of donor by taking averages. To further evaluate the
performance of various method for clustering, we calculate
the error between the estimated and the true membership
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Table 1. Estimation errors for various methods in the simulation study. Reported are the relative Hamming distances between
the estimated and true C1, C2, and C3. The numbers in parentheses are the standard errors

BayMC HLloyd UMF MultiCluster

Overlapped

Error of C1
0.013
(0.009)

0.568
(0.010)

-
0.566
(0.014)

Error of C2
0.029
(0.021)

0.939
(0.019)

1.602
(0.011)

1.040
(0.011)

Error of C3
0.088
(0.022)

1.154
(0.009)

0.730
(0.033)

0.981
(0.017)

Non-overlapped

Error of C1
0.019
(0.010)

≤0.001
(≤0.001)

-
0.052
(0.029)

Error of C2
0.011
(0.007)

≤0.001
(≤0.001)

0.965
(0.034)

0.013
(0.013)

Error of C3
0.067
(0.006)

0.893
(0.010)

0.553
(0.031)

0.872
(0.019)

matrices through Hamming distance normalized by the re-
spective total number of elements. If the estimated number
of clusters differs from the truth, we pad the smaller ma-
trix with columns of zeros to make them comparable. Note
that HLloyd and MultiCluster cannot distinguish the over-
/under-expressed genes as 1 and −1 in C3, thus we set −1’s
in true C3 to 1’s when calculating the Hamming distance for
these two methods. The average results of two cases based
on 50 simulated replicates are summarized in Table 1. In the
overlapped case, the BayMC method outperforms the other
competing methods in estimating the membership matri-
ces. For HLloyd and MultiCluster, although they take the
true number of clusters as inputs, their performance of es-
timating the membership matrices is significantly inferior
to BayMC, which may be explained by their model as-
sumptions without overlapping. In the non-overlapped case,
which is in favor of HLloyd and MultiCluster, HLloyd has
the best performance in estimating C1 and C2. However,
BayMC outperforms all the competing methods in estimat-
ing C3, and its performance in estimating C1 and C2 is
the second best. Note again that HLloyd and MultiCluster
directly inputs the true number of clusters. Overall, the pro-
posed BayMC method shows its advantage of clustering. In
both cases, UMF shows unsatisfactory results, which may
because it loses its efficiency by ignoring the heterogeneity
of donors.

Sensitivity analysis. We perform sensitivity analysis
under the setting of overlapped case regarding the choice
of all the hyperparameters: (am, bm) for m, (aρ, bρ) for ρ,
(ψ−1, ψ0, ψ1) for γ, (μ, σ

2) for {ηt}Tt=1 and {μg}Gg=1, (aκ, bκ)

for {κg}Gg=1, (aω, bω) for elements in ω+ and ω−, and
(μb, σ

2
b ) for b

+ and b−. Results show that the inference under
the proposed BayMC model is relatively robust. Details can
be found in Section S.2.2 of the Supplementary Material.

Additional simulation with missing observations.
It is commonly seen that the observed gene expression
data are accompanied by some missing values. For exam-
ple, roughly 50% observations in GTEx RNA-seq dataset

are missing due to lack of measurements for random tissues
in some donors. Our low-tensor-rank Bayesian hierarchical
model can directly handle the missing observations with-
out performing data imputation. In particular, when some
ydtg’s are missing, the corresponding likelihood function and
latent model will have similar forms as in (3) and (4) but
restrict (d, t, g) in Ω, where Ω represents the non-missing in-
dex subset. We conduct an additional experiment to demon-
strate the performance of our proposed BayMC when there
exists a proportion of missing values. More precisely, from
the data generated in the overlapped case, we randomly
delete the gene expression of 50% tissues among all donors
to mimic the missing mechanism of the GTEx data. In this
additional setting, the BayMC method could correctly iden-
tify the number of clusters on 70% of the 50 replicates. The
results of the average estimated membership matrices are
depicted in the third row of Figure 1. As a comparison, we
also plot the true membership matrices (the first row) and
the average estimation from the complete observations (the
second row) in Figure 1. Figure 1 shows BayMC has simi-
lar performance for missing and complete observations, and
visibly close to the truth.

5. REAL DATA

We apply the proposed BayMC method to the GTEx v6
gene expression data1 and compare with two tensor-based
alternatives, HLloyd and MultiCluster. The data consist of
RNA-seq samples collected from 544 individuals across 53
human tissues. For each donor, some clinical information
like gender and age is also recorded.

5.1 Data preprocessing

Since the raw data are the gene read counts of RNA-seq,
a preprocessing procedure is needed before the clustering
methods are applied.

1Available at https://www.gtexportal.org/home/datasets.
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Figure 1. The average simulation results based on 50
replicates in the overlapped case for BayMC. The green,

black, and red cells represent 1, 0, and −1, respectively. The
first row: plots of the true values of C1, C2, and C3. The

second row: plots of the average estimations of C1, C2, and
C3 with the complete observations. The third row: plots of

the average estimations of C1, C2, and C3 with 50%
proportion of missing observations.

Quality control. The first step of preprocessing data
is to normalize the raw data to eliminate the systematic
variation and guarantee the expression levels are compara-
ble between genes and samples. Similar to [48], we use es-
timateSizeFactor (in R package DESeq2), which takes into
account both sequencing depth and RNA composition, to
achieve normalization. We then take a logarithm of the pro-
cessed data.

Subset selection. To derive an interpretable clustering
results, we lay our interest on the brain subset of GTEx-
RNA data. It is well-known that depression (major depres-
sive disorder or clinical depression) is a common but serious
mood disorder [49, 51]. It causes severe symptoms that af-
fect how people feel, think, and handle daily activities, such
as sleeping, eating, and working [4, 26, 30]. We are par-
ticularly curious about genes related to depression and how
they take effect. We thus focus on the 13 brain tissues and 15
depression-related genes. These genes are selected according
to Atlas of the Developing Human Brain (the corresponding
database is available at http://www.brainspan.org/ish) and
listed in Table 2. There are 193 donors related to the brain
tissues. Therefore, we get a 193 (donors) × 13 (tissues) ×
15 (genes) tensor for analysis.

We run the MCMC algorithm for 10,000 iterations with
one random initial cluster. The first 5,000 iterations are dis-
carded as burn-in and posterior samples are retained every
10th iteration after burn-in. We summarize R, C1, C2, and
C3 using the same procedure as described in Section 3.3.
To apply HLloyd and MultiCluster, note, again, the num-
ber of clusters need to be pre-specified. We plug in 6 as the

number of clusters for these two methods according to the
suggestion in [47]. Also, the missing values in the original
data are imputated by k nearest neighbor (KNN) for HLloyd
and MultiCluster as elaborated in [47].

5.2 Results

For the proposed BayMC method, we depict the trace
plot of the number of clusters over the course of MCMC
in Figure 2, which indicates 3 clusters. The point estimates
of the membership matrices of donors, tissues, genes are
depicted from left to right in Figure 3, respectively. The
obtained clustering results can be interpreted by the spa-
tial information in brain for tissues, the gene ontology (GO)
enrichment analyses among both the overexpressed (+1 in
C3) and underexpressed (−1 in C3) genes, and the hyper-
geometric test on donors [40, 3].

Figure 2. The trace plot of the number of clusters for the
proposed BayMC method.

Figure 3. From left to right are the estimated membership
matrices of tissues and genes using BayMC. The green, black,

and red cells represent 1, 0, and −1, respectively. The
membership matrix of donors is presented in Section S.3 of

the Supplementary Material.

In particular, the first cluster can be treated as a cerebel-
lum related cluster, since its tissue membership only con-
tains cerebellar hemisphere and cerebellum [44]. Genes un-
derexpressed in this cluster are highly correlated to regu-
lation of serotonin secretion (p = 3.67 × 10−9 under Bon-
ferroni correction), which is consistent with the scientific
finding in [39, 24, 37, 36]. We also summarize the age and
gender effect of donors on the first cluster by conducting
hypergeometric test. The results show that females are en-

226 Z. Wang et al.

http://www.brainspan.org/ish


Table 2. The depression-related genes according to Atlas of the Developing Human Brain

NAME DESCRIPTION

CNR1 cannabinoid receptor 1 (brain)
CREB1 cAMP responsive element binding protein 1
CRH corticotropin releasing hormone

CRHR1 corticotropin releasing hormone receptor 1
CRHR2 corticotropin releasing hormone receptor 2
DRD4 dopamine receptor D4
GAD2 glutamate decarboxylase 2 (pancreatic islets and brain, 65kDa)
GRIN1 glutamate receptor, ionotropic, N-methyl D-aspartate 1
HTR1A 5-hydroxytryptamine (serotonin) receptor 1A, G protein-coupled
HTR1B 5-hydroxytryptamine (serotonin) receptor 1B, G protein-coupled
HTR2A 5-hydroxytryptamine (serotonin) receptor 2A, G protein-coupled
HTR3A 5-hydroxytryptamine (serotonin) receptor 3A, ionotropic
MAOA monoamine oxidase A
PDE1A phosphodiesterase 1A, calmodulin-dependent
SST omatostatin

riched in this cluster (p = 0.076), confirmed by the research
of [35], which may be a factor relevant to the lower incidence
of major unipolar depression in males. The second cluster
is a basal ganglia related cluster, since its tissue member-
ship contains three basal ganglia subtissues: caudate, puta-
men, and nucleus accumbens [44]. The underexpressed genes
in this cluster are highly correlated to regulation of amine
transport (p = 5.67 × 10−4 under Bonferroni correction),
whereas the overexpressed genes in this cluster are highly
related to neurotransmitter secretion (p = 2.96×10−2 under
Bonferroni correction). These results are confirmed by [16],
which shows that basal ganglia have been found to contain
remarkably high levels of many of the neurotransmitters.
Hypergeometric test shows no significant effects of age and
gender on this cluster. Comparing the results on the first
and second clusters, the proposed BayMC method distin-
guishes abnormally high and low expressions of some genes
across these clusters, which may be interpreted through the
identified subjects and tissues in each cluster. For example,
BayMC finds that gene HTR1B has low expression in the
first cluster and high expression in the second cluster. This
finding that HTR1B has different gene expression levels be-
tween cerebellum and basal ganglia related tissues is consis-
tent with existing biological knowledge [13, 14]. The third
cluster consists of spinal cord and substantia nigra [1]. The
underexpressed genes in this cluster are highly correlated to
anterograde trans-synaptic signaling (p = 8.37×10−7 under
Bonferroni correction), whereas the overexpressed genes in
this cluster are highly related to dopamine metabolic pro-
cess (p = 1.196 × 10−2 under Bonferroni correction). We
can find similar results in [42], which shows the key role of
dopamine in spinal cord. Hypergeometric test shows females
(p = 0.017) are enriched in this cluster, which may suggest
a gender effect on this cluster [6].

For the results of applying HLloyd and MultiCluster
methods on GTEx RNA-seq dataset, we depict their esti-
mated membership matrices in Figures 4 and 5, respectively.

These figures show that three of their clusters with respect
to tissues are consistent with ours among their obtained
6 clusters. However, neither method allows overlaps, which
may not be suitable for gene expression analysis since genes
are known to function through multiple pathways. More-
over, the Tucker decomposition used for HLloyd lacks inter-
play information among the three modes of tensor. In other
words, they can not associate the clustering information of
identified genes with that of the brain subregions.

Figure 4. From left to right are the estimated membership
matrices of tissues and genes using HLloyd. The green and

black cells represent 1 and 0, respectively.

To further compare the proposed BayMC with HLloyd
and MultiCluster, we check the model fit adequacy (mea-
sure of “lack-of-fit”) for various methods. More precisely,
we calculate the relative errors and correlations between the
observed tensor measurements Y and the estimated ten-
sor Ŷ from three methods. The results are summarized in
Table 3. It shows that the in-sample error is 7.4% and in-
sample correlation between fitted value and observation is
96% for BayMC, which outperforms the other two methods,
especially HLloyd. This result is consistent with our simu-
lation study that we can benefit from adaptive learning on
the latent indicator tensor, interactive multi-way clustering
model, and allowing overlaps in clusters.
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Figure 5. From left to right are the estimated membership
matrices of tissues and genes using MultiCluster. The green

and black cells represent 1 and 0, respectively.

Table 3. The model fit adequacy of GTEx RNA-seq data

BayMC HLloyd MultiCluster

In-sample error 7.4% 16.6% 7.6%
In-sample correlation 96% 90% 95.6%

6. DISCUSSION

In this paper, we have proposed a novel identifiable multi-
way clustering approach for higher-order tensor data. With
the form of CP decomposition, our model can fully ex-
plore the tensor structure, cluster all the modes simultane-
ously, and characterize the interaction among the modes.
Using Bayesian hierarchical model and a nonparametric
Bayesian prior, our approach can also automatically deter-
mine the number of clusters from the posterior samples and
allow overlapping clusters. Applying the proposed method
on GTEx RNA-seq data, we discovered three gene expres-
sion modules within brain region, which may further assist
in uncovering disease mechanism.

The proposed BayMC is also conceptually related to com-
munity detection based on high-order Stochastic Block Mod-
els (SBMs), such as [34, 15, 22], for which tensor decompo-
sition on the latent features and clustering on hypergraphs
are often implemented. Our model is different from the ap-
proach of SBM in several folds. First, SBM requires the bi-
nary/ternary tensor, which represents the relationships be-
tween entities, to be observed; whereas our model treats the
ternary tensor as latency and learns it adaptively from the
real-valued data. Second, to implement SBM, at least two
modes of the tensor should have the identical number of di-
mensions since these two modes of the tensor both represent
all entities. Finally, SBM needs an additional step to achieve
clustering analysis.

There are some directions for future work to generalize
our model. First, the current posterior inference is based
on MCMC, and the computation is quite expensive for
data of large scale. We may explore faster algorithms such
as consensus Monte Carlo algorithms [33] and variational
inference [7]. Second, extending our model to multi-omics
data by integrating multi-omics information, for example,

combining DNA methylation and protein abundance data
[45], is also of interest.
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