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Density-convoluted tensor support vector
machines
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With the emergence of tensor data (also known as multi-
dimensional arrays) in many modern applications such as
image processing and digital marketing, tensor classifica-
tion is gaining increasing attention. Although there is a
rich toolbox of classification methods for vector-based data,
these traditional methods may not be adequate for tensor
data classification. In this paper, we propose a new classi-
fier called density-convoluted tensor support vector machine
(DCT-SVM). This method is motivated by applying a ker-
nel density convolution method on the SVM loss to induce
a new family of classification loss functions. To establish
the theoretical foundation of DCT-SVM, the probabilistic
order of magnitude for its excess risk is systematically stud-
ied. For efficiently computing DCT-SVM, we develop a fast
monotone accelerated proximal gradient descent algorithm
and show the convergence of the algorithm. With simulation
studies, we demonstrate the superior performance of DCT-
SVM over many popular classification methods. We further
demonstrate the real potential of DCT-SVM using a modern
data application for online advertising.

AMS 2000 subject classifications: Primary 62H30;
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Keywords and phrases: Kernel density estimation,
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1. INTRODUCTION

Tensor data are increasingly common in many applica-
tion areas such as digital marketing, econometrics, finance,
image processing, social network analysis, etc. Among these
applications, classification on tensor predictors is a ubiqui-
tous task. For example, it is crucial for online advertising
companies to identify intended audience to raise their rev-
enues. For a group of ad audience, by summarizing their
view counts of p1 ad campaigns that are delivered on p2 de-
vices (e.g., phones, tablets, personal computers) and p3 age
groups, we construct a p1 × p2 × p3 tensor-valued predictor,
which can be used to predict whether the proportion of the
ads getting clicked after being displayed, namely, the click-
through rate, is above some pre-specified level. In particular,
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with binary labels yi ∈ {±1} and M -way tensor-valued pre-
dictor Xi ∈ R

p1×p2×···×pM in the training data {yi,Xi}ni=1,

the goal is to fit a classifier f̂ and predict the class label
ynew for unseen test tensor data Xnew according to the sign
of f̂(Xnew).

Powerful classification algorithms with high prediction
accuracy are paramount to the success of these applications
with tensor data. Most classical machine learning algorithm
have been developed for vector-valued predictors [15]. Ex-
amples of popular algorithms include linear discriminant
analysis, logistic regression, näıve Bayes classifiers, kernel
density classifiers, neural networks, ensemble learning meth-
ods including random forest and gradient boosting, as well
as the support vector machines [SVM, 8, 37, 38]. Among
these methods, the SVM enjoys nice geometric interpreta-
tion without imposing specific model assumptions: it per-
forms classification by directly maximizing the margin be-
tween the different classes. The SVM has been shown to
be one of the best classifiers in terms of the prediction ac-
curacy through extensive numerical studies on hundreds of
benchmark data sets [11].

In contrast to the rich classification toolbox for the
vector-valued data, how to classify tensor data is still an ac-
tive research area. A plausible strategy of classifying tensor
data is to unfold all the tensors into vectors and then apply
vector-based classifiers; however, vectorization inevitably
destructs the intrinsic spatial tensor structure and may yield
poor classification accuracy. Hence, in the literature it is
a general agreement that tensor data should be analyzed
in its original form, and existing vector methods should be
coupled with appropriate assumptions to exploit the tensor
structure for more accurate classification.

Given the highly competitive classification accuracy of
SVM on vector-valued data, it is an appealing and impor-
tant topic to extend SVM to tensor data analysis. A special
challenge of generalizing SVM is efficient computation. Un-
like many regression methods which possess closed-form so-
lutions or efficient algorithms, even the vector-valued SVM
is computationally challenging: it is either solved on its dual
space via the quadratic programming algorithm or formu-
lated as a non-smooth unconstrained optimization problem
handled by the subgradient descent. Existing tensor SVM
methods often adopt the alternating algorithm to break the
tensor SVM into a series of sub-problems that computes the
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vector-valued SVM [34, 13]. With these intensive SVM algo-
rithms cycled in every iteration, the alternating algorithm
drives the tensor SVM computationally prohibitive. In the
meantime, theoretical justifications for existing tensor SVM
methods are absent. It is unclear whether these methods
produce consistent results in theory.

In this work, to advance both theory and computation of
tensor SVM, we formulate a tensor SVM model which han-
dles tensor-valued predictors and also allows some vector-
valued predictors in the model to adjust for the prediction.
To leverage the tensor structure, we assume that the tensor
coefficient satisfies the low-rank assumption that the tensor
of interest can be approximated by a low-rank decomposi-
tion, namely, the CANDECOMP/PARAFAC (CP) decom-
position [17, 19, 5, 31, 49]. The CP decomposition is attrac-
tive because it drastically reduces the number of parameters
to allow parsimonious modeling. The CP decomposition is
also very interpretable and is regarded as a generalizations of
singular value decomposition on matrices (two-way tensors).
In the literature, [51] initiated a tensor regression model
based on the CP decomposition, and they further extended
the model to generalized linear models including logistic re-
gression for classification analysis. On the other hand, the
low-rank assumption has also be employed by tensor gener-
alizations of linear discriminant analysis [22, 50].

Moreover, to tackle the burden of computing tensor SVM,
we employ a technique called kernel density convolution to
smooth the SVM loss. This technique has been used in the
optimization community, for example, [3] and [30], and was
recently used for smoothing quantile regression [10, 16, 33]
and the high-dimensional SVM [42]. The use of kernel den-
sity convolution on tensor SVM essentially gives birth to
a brand-new classifier, which we coin the name Density-
Convoluted Tensor SVM (DCT-SVM). Although DCT-SVM
is motivated from a computational strategy, in contrast to
the use of existing smoothing techniques, we appraise DCT-
SVM as a new classifier rather than treating it as an approx-
imated solution of the original SVM. DCT-SVM is indexed
by δ, which originates from the bandwidth of kernel den-
sity estimation. Rather than restricting δ → 0 to aim for
the SVM loss, we treat the index δ as a tunable hyperpa-
rameter of DCT-SVM. We systematically study the learning
theory of DCT-SVM under general random design setting.
Our theoretical result is the first in the literature that estab-
lishes the probabilistic order of magnitude for the excess risk
under the tensor large-margin classification framework. Our
theory is non-trivial and some new applications of empirical
process theory are employed. Regarding the computation,
we develop an efficient monotone accelerate proximal gra-
dient descent algorithm to compute DCT-SVM and present
the convergence analysis, so we avoid using alternating al-
gorithm which iterates intensive computations.

With the success of tensor SVM, we further extend it to
a unified family of large-margin classifiers, which include lo-
gistic regression and Huberized SVM as special cases. With

extensive numerical studies, we show that the DCT-SVM
outperforms the other large-margin classifiers and popular
vector-valued classifiers such as boosting, random forest,
kernel logistic regression, kernel SVM, and neural nets, as
well as a tensor classification method called CATCH which
is based on linear discriminant analysis [29]. Last, we apply
the method on a real-world application on online advertising
to demonstrate the adequate interpretability and predictive
power of DCT-SVM. The promising performance of DCT-
SVM also corroborates the argument in Chapter 3 of [15]
that for prediction purposes linear models can sometimes
outperform fancier nonlinear models.

We would like to remark that there are other approaches
to exploit the tensor structure, which we do not explore
in this paper. For example, [45] fit the logistic regression
model with the addition of a variety of tensor norm penal-
ties. [24, 48, 46] consider another type of tensor decompo-
sition called Tucker decomposition [35] to conduct the re-
gression analysis on tensor data. [29, 27] assume that the
covariance matrix has a separable structure under the linear
discriminant analysis model, while [44] incorporate the enve-
lope model [7] into tensor discriminant analysis. For reviews
of recent advances in tensor modeling, we refer interested
readers to two survey papers, [4] and [32].

1.1 Notations and structure

We first introduce standard tensor notation and oper-
ations [19, for example] that are used frequently in this
paper. For positive integers M ≥ 2, p1, . . . , pM , a multi-
dimensional array B ∈ R

p1×···×pM is referred to as an
M -way tensor. The vectorization of a tensor B, vec(B),
is a (

∏
m pm × 1) column vector, with Bi1,...,iM being its

j-th element, where j = 1 +
∑M

m=1(im − 1)
∏m−1

m′=1 pm′ .
The mode-m matricization, B(m), is a matrix of dimension
pm×

∏
m′ �=m pm′ , with Xi1,...,iM being its (im, j)-th element,

where j = 1+
∑

m′ �=m(im′ − 1)
∏

l<m′,l �=m pl. If we fix every
index of the tensor but one, then we have a fiber. For ex-
ample, Bi1,...,im−1,Im,im+1,...,iM for Im ∈ {1, . . . , pm} forms a
(pm × 1) vector that is called the mode-k fiber of B.

The mode-m product of a tensor B and a matrix α ∈
R

d×pm , denoted by B×mα, is anM -way tensor of dimension
p1 × · · · × pm−1 × d × pm+1 × · · · × pM , with each element
being the product of a mode-m fiber of B and a row vector
of α. The mode-m vector product of a tensor B and a row
vector of c ∈ R

pm , denoted by B×̄mc, is an (M − 1)-way
tensor of dimension p1× . . .×pm−1×pm+1× . . .×pM , with
each element being the inner product of a mode-m fiber
of B and c. The inner product of two tensors of the same
dimensions is defined to be 〈B,X〉 = vec(B)�vec(X ). The
outer product of M vectors β1 ∈ R

p1 , . . . ,βM ∈ R
pM is

denoted as β1 ◦ . . . ◦ βM , which is a p1 × . . . × pM tensor

whose (j1, . . . , jM )-th element is
∏M

m=1 βmjm .
For a, b ∈ R, let a∧ b = min{a, b} and a∨ b = max{a, b}.

For a sequence {an} and another nonnegative sequence {bn},
we write an = O(bn) if there exists a constant c > 0 such

232 B. Wang et al.



that |an| ≤ cbn for all n ≥ 1. And we write an � bn if
an = O(bn) and bn = O(an). Also, we use an = o(bn),
or an � bn, to represent limn→∞ an/bn = 0. We write
bn  an if an � bn. For nonnegative sequences {an} and
{bn}, we also write an � bn (or bn � an) if there ex-
ists a constant c > 0 such that an ≤ cbn for all n ≥ 1.
Let ψ : [0,∞) → [0,∞] be a nondecreasing, convex func-
tion with ψ(0) = 0, then we denote ‖Z‖ψ = inf{t > 0 :
E[ψ(|Z|/t)] ≤ 1} as the ψ-Orlicz norm for any random vari-
able Z. In particular, if p ≥ 1, let ψp(x) := exp{xp} − 1
which is a nondecreasing convex function with ψp(0) = 0,
then we denote its corresponding Orlicz norm as ‖Z‖ψp =
inf{t > 0 : E[exp{|Z|p/tp}] ≤ 2} where Z is any random
variable. For a sequence of random variables {Zn}n≥1, we
write Zn = Op(1) if limM→∞ lim supn→∞ P(|Zn| > M) = 0,
and we write Zn = op(1) if limn→∞ P(|Zn| > ε) = 0, ∀ε > 0.
For two sequences of random variables Zn and Z ′

n, we write
Zn = Op(Z

′
n) if Zn/Z

′
n = Op(1), and we write Zn = op(Z

′
n)

if Zn/Z
′
n = op(1).

The rest of the paper is organized as follows. In Section
2, we first review SVM for vector-valued data, introduce
the tensor SVM with CP decomposition, and propose DCT-
SVM. The learning theory and computation algorithm of
DCT-SVM are studied in Section 3 and 4, respectively. Sec-
tion 5 presents numerical example and Section 6 studies the
real online advertising application.

2. METHODOLOGY

2.1 Review of support vector machines for
vector-valued data

This work focuses on binary classification. Suppose the
training sample consists of n data points, {yi, zi}, where zi is
a p-dimensional predictor and yi ∈ {−1, 1} for i = 1, 2, . . . , n
is the binary class label. The goal of classification is to find a
decision boundary {z : f(z) = 0} so that the label of an un-
seen data point z0 is predicted as sgn(f(z0)). The class label
is incorrectly predicted if Iyf(z)<0, which is called the 0-1 loss
and I is the indicator function. The risk of a classifier f is
called the 0-1 risk and is defined as R(f) = EIyf(z)<0, where
the expectation is taken over the data generating distribu-
tion. The lowest risk R� = minf ER(f) is called the Bayes
risk and is given by the Bayes classifier f�(z) = Iη(z)>1/2,
where η(z) is the conditional probability P (y = 1|z). The
term yf is dubbed the margin.

Due to the intractable nature of the 0-1 loss, a family of
large-margin classifiers are developed to minimize the φ-risk,
Rφ(f) = Eφ(yf), where φ(yf) is a convex surrogate of the
0-1 loss and a function of the margin. Among the family of
large-margin classifiers, the SVM is widely used in practice.
The SVM loss is φsvm(yf) = (1 − yf)+ = max{1 − yf, 0},
which is called the hinge loss.

In this work, we focus on linear classifiers, which often
offer interpretable descriptions of how predictions are made.
Linear classifiers take the form of α0 + z�β. When solving

the classifier from the training data, the SVM is formulated
as

(α̂0, β̂) = argmin
α0∈R, β∈Rp

[
1

n

n∑
i=1

φsvm

(
yi(α0 + z�i β)

)
+ λ‖β‖22

]
,

(2.1)

where ‖β‖22 = β�β is the φ2 penalty, λ is the shrinkage
parameter to be tuned. According to the solution of prob-
lem (2.1), the label of an unseen data point (y0, z0) is pre-

dicted as sgn(α̂0 + z�0 β̂).
A family of large-margin classifiers is formed by replacing

the hinge loss in problem (2.1) with other large-margin loss
functions. Two examples are:

• logistic regression:

φlogit(yf) = log(1 + e−yf );

• Huberized SVM:

φHSVM(yf) =

⎧⎪⎪⎨
⎪⎪⎩
1− yf − δ/2, yf ≤ 1− δ,
(1− yf)2

2δ
, 1− δ < yf ≤ 1,

0, yf > 1,

which approximates the SVM hinge loss as δ → 0.

2.2 Tensor support vector machines with CP
decomposition

For tensor data analysis, suppose each data point in the
training data (yi, zi,Xi)

n
i=1 has a binary label yi ∈ {−1, 1},

vector-valued predictors zi ∈ R
p0 , and M -way tensor-valued

predictors Xi ∈ R
p1×p2×···×pM . We consider the general data

generating scheme where the training data (yi, zi,Xi)
n
i=1 are

i.i.d. copies of some random element (y, z,X ), and all the
random variables are defined on some common probability
space (Ω,F ,P) with E being the corresponding expectation.

We consider the linear classifiers that take the form
f(z,X ) = α0+z�α+〈B,X〉, where α0 is an intercept, α is a
vector-valued coefficient, and B is a tensor-valued coefficient
that has the same dimension with the tensor predictor X .
To reduce the number of parameters in the classifier f(z,X ),
we impose CANDECOMP/PARAFAC (CP) decomposition
[17, 19] on the tensor coefficient B:

(2.2) B =

R∑
r=1

β(1r) ◦ β(2r) · · · ◦ β(Mr),

where β(mr) ∈ R
pm for each m and r, and R is the rank of

the CP decomposition. Therefore the number of parameters
in B is effectively reduced from

∏M
m=1 pm to R

∑M
m=1 pm.

For ease of exposition, we denote the CP decomposition in
equation (2.2) by

B := [[B1,B2, . . . ,BM ]],
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where Bm = (β(m1),β(m2), . . . ,β(mR)) ∈ R
pm×R for each

m = 1, 2, . . . ,M . Also, the vectors β(mr) are not identifiable
by themselves. To handle the identifiability issue, we restrict
the coefficient in the following convex set,

SB = {[[B1,B2, . . . ,BM ]]|β(mr)
1 = 1,

m = 1, . . . ,M − 1,

r = 1, . . . , R,

β
(M1)
1 ≥ β

(M2)
1 ≥ . . . ≥ β

(MR)
1 },

which is the conventional way of handling the scaling and
permutation indeterminacy in the literature; see [51] for ex-
ample.

With the CP decomposition, we formulate the tensor
SVM as
(2.3)(

α̂0, α̂, B̂
)
= argmin

α0∈R,α∈R
p0

B=[[B1,B2,...,BM ]]∈SB

[L(α,B) + P(α,B)] ,

where

L(α,B)

=
1

n

n∑
i=1

{
1− yi

(
α0 + z�i α〈[[B1,B2, . . . ,BM ]],Xi〉

)}
+
,

and

(2.4) P(α,B) =λ

(
‖α‖22 +

M∑
m=1

‖Bm‖2
)

is the 
2 penalty on α and each Bm. Prediction on an un-
seen data point (ynew, znew,Xnew) is thus made according to
sgn(α̂0 + z�newα̂+ 〈B̂,Xnew〉).

2.3 Smoothing SVM through density
convolution

The main computational difficulty for solving prob-
lem (2.3) lies in its non-smooth objective function, which
results from the non-smoothness of the SVM hinge loss. To
handle the computational burden, we employ a kernel den-
sity convolution technique to smooth the objective.

We first relate the SVM problem with the distribution of
the margin. Given parameters α0,α,B, we treat the margin

T (y, z,X ) := y
(
α0 + z�α+ 〈[[B1,B2, . . . ,BM ]],X〉

)
as a new random variable and define F (t) to be its cumula-
tive distribution function (cdf). Hence, the objective func-
tion of the tensor SVM can be written as

∫∞
−∞(1− t)+dF (t).

Likewise, the unpenalized empirical version of the SVM,
i.e., problem (2.3), can be understood as

∫∞
−∞(1− t)+dF̂ (t),

where the empirical cdf F̂ (t) = n−1
∑n

i=1 IT (yi,zi,Xi)≤t is
employed to estimate the cdf of the margin.

To smooth the objective, we use the kernel density esti-
mator in place of the empirical cdf,

F̃ (t) =

∫ t

−∞

1

nδ

n∑
i=1

K

(
u− T (yi, zi,Xi)

δ

)
du,

thus the objective function of the unpenalized empirical ver-
sion of the SVM becomes∫ ∞

−∞
(1− t)+dF̃ (t)

=
1

n

n∑
i=1

∫ ∞

−∞
(1− t)+

1

δ
K

(
t− T (yi, zi,Xi)

δ

)
dt

:=
1

n

n∑
i=1

φδ(T (yi, zi,Xi)),

inducing a family of new large-margin loss functions, which
we call density-convoluted tensor SVM loss (DCT-SVM).

In this work, we consider the Gaussian kernel K(u) =
1√
2π

exp{−u2/2}, which gives the loss function of DCT-SVM

with Gaussian kernel:

φGauss
δ (yf) = (1− yf)Φ

(
1− yf

δ

)

+
δ√
2π

exp

{
− (1− yf)2

2δ2

}
,

where Φ(·) is the cumulative distribution function of the
standard normal distribution.

We also use the Epanechnikov kernel, K(t) = 0.75(1 −
t2)I{|t|≤1}, which is commonly used in kernel density esti-
mation and the DCT-SVM loss is:

φEpan
δ (yf)

=

⎧⎪⎪⎨
⎪⎪⎩
1− yf, yf ≤ 1− δ,
(1− yf + δ)3(3δ − (1− yf))

16δ3
, 1− δ < yf ≤ 1 + δ,

0, yf ≥ 1 + δ.

Figure 1 plots the DCT-SVM loss functions with δ = 1
using Gaussian and Epanechnikov kernels, SVM hinge loss,
Huberized SVM loss with δ = 1, and logistic regression loss.
With DCT-SVM loss functions, the induced DCT-SVM clas-
sifier is formulated as

(2.5)

(
α̂0δ, α̂δ, B̂δ

)

= argmin
α0∈R,α∈R

p0

B=[[B1,B2,...,BM ]]∈SB

[
1

n

n∑
i=1

φδ

(
yi
(
α0 + z�i α

+〈[[B1,B2, . . . ,BM ]],Xi〉)) + P(α,B)] ,

where the penalty term was given in equation (2.4).
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Figure 1. Plots of large-margin loss functions, including SVM, DCT-SVM with Gaussian kernel and δ = 1, DCT-SVM with
Epanechnikov kernel and δ = 1, Huberized SVM with δ = 1, and logistic regression, against the margin variable yf .

3. LEARNING THEORY

In this section, we provide the statistical properties of

DCT-SVM for tensor data. We impose the following condi-
tions for the choice of kernel function in density convolution.

Assumption 1. Suppose that the kernel function K : R →
[0,∞) satisfies the following properties:

1. K(−t) = K(t), ∀t ∈ R;
2. inft∈[−r,r] K(t) > 0 for some large enough r > 0;

3.
∫∞
−∞ K(t) dt = 1.

Assumption 1 is standard and can be easily satisfied
by many kernel functions including Gaussian kernels and

Epanechnikov kernels.

In this section, our theory holds for the classifier DCT-
SVM indexed by any given positive δ; for notation sim-

plicity, we ignore the subscript δ in the loss function and
estimators. To establish the theoretical properties of our

estimators, we assume {(yi, zi,Xi)}ni=1, (y, z,X ) are inde-
pendent and identically distributed on {−1, 1} × R

p0 ×
R

p1×p2×···×pM , and there exists some constant Π > 0 such

that max{‖z‖, ‖vec(X )‖} ≤ Π almost surely. Also, we search
for a solution in a compact parameter space {(α0,α,B) :

max{‖α0‖, ‖α‖, ‖vec(B)‖} ≤ Π′} where Π′ > 0 is some con-
stant. Similar setup is widely considered for nonconvex op-

timization problems, see for instance, [16, 41].

We define the excess risk associated with parameter value
(α0,α,B),

R(α0,α,B) :=E[φ{y(α0 + z�α+ 〈B,X〉)}]
− E[φ{y(α∗

0 + z�α∗ + 〈B∗,X〉)}],

where

(α∗
0,α

∗,B∗) = argmin
(α0,α,B)∈Θ

E
[
φ
{
1− y

(
α0 + z�α+ 〈B,X〉

)}]
,

and Θ = {(α0,α,B) : B ∈ SB}.
With Assumption 1, the following theorem gives an

bound for the excess risk of our estimator (α̂0, α̂, B̂).

Theorem 1. Suppose the kernel function K satisfies the
properties in Assumption 1. Choosing λ � n− 1

2 , we have

R(α̂0, α̂, B̂) = Op(n
− 1

4 ).

The above probabilistic order of magnitude for the excess
risk also implies the order of magnitude of the risk under the
0-1 loss, which is the following corollary.

Theorem 2. Suppose the linear function ᾱ0+z�ᾱ+〈B̄,X〉
is the solution to argminf E[I{y �=sign(f(α0,α,B))}] and B̄ ∈ SB.
Let

R0−1(α0,α,B) =E[I{y �=sign(α0+z�α+〈B,X〉)}]

− E[I{y �=sign(ᾱ0+z�ᾱ+〈B̄,X〉)}].

Then, under the conditions of Theorem 1,

R0−1(α̂0, α̂, B̂) = Op(n
− 1

8 ).

Theorems 1 & 2 both indicate that our estimator is con-
sistent, as both risks converge to zero in probability as
n → ∞. Such results provide theoretical support for our
method. Since we do not impose specific condition on pi,
our theory holds true under both high-dimensional and low-
dimensional settings. In particular, in high dimensions, we
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do not require sparse signal, which is different from the tra-
ditional high-dimensional literature where the signal is typ-
ically assumed to be sparse.

Our theory focuses on the probabilistic risk bound for
tensor classification with 
2 penalty. This is different from
works that study the estimation error of the coefficients
[50, 24, 44] under the logistic regression or discriminant anal-
ysis model. In practice, SVM is usually used to produce an
accurate prediction, while researchers rarely try to interpret
the coefficients. Hence, our study of the risk bound is more
relevant to the application of SVM. On the other hand, lit-
erature on high dimensional tensor regression and classifica-
tion typically adopt 
1-penalty or non-convex penalty and
they typically require sparse signal [29, 14]. To the best of
our knowledge, our work is the first in literature to study
tensor classification with 
2-penalty, without requiring any
signal to be sparse. Moreover, the explicit convergence rates
appearing in Theorem 1 and Theorem 2 are the first in the
literature for tensor SVM.

4. COMPUTATION

In this section, we develop an accelerated proximal gra-
dient descent algorithm to solve problem (2.5). For the
sake of presentation, we define a new vector of length
R
∑M

m=1 pm + p0 + 1:

(4.1) γ =
(
α0,α

�, vec(B1)
�, vec(B2)

�, . . . , vec(BM )�
)�

assembling all the parameters to be estimated. We then
write the objective function of problem (2.5) as C(γ) and
name its feasible set as S(γ).

We first initialize the algorithm. To accommodate the

equality constraint in SB, we fix the first row of each B
(0)
m ,

m = 1, 2, . . . ,M−1 to be one, and we initialize all the other

elements in α
(t)
0 , α(t), B

(0)
1 ,B

(0)
2 , . . . ,B

(0)
M , e.g., from the

standard Gaussian distribution. Since the inequality con-
straint in SB does not affect the objective value after the
equality constraint is satisfied, the inequality constraint is
handled at the last step of the algorithm. On the basis of

α
(0)
0 , α(0), B

(0)
1 ,B

(0)
2 , . . . ,B

(0)
M , γ(0) is assembled according

to (4.1).

For t = 0, 1, 2, . . ., the proximal gradient descent algo-
rithm updates

γ(t+1) = γ(t) − dt∇C(γ(t)),

where dt is the step size to be specified later. To give

∇C(γ(t)), we first retrieve each α
(t)
0 , α(t), and each B

(t)
m

from γ(t) according to (4.1). For each m = 1, 2, . . . ,M , let
(Xi)(m) be the mode-m matricization of Xi, define

κ
(t)
i = α

(t)
0 + z�i α

(t) +
〈
[[B

(t)
1 ,B

(t)
2 , . . . ,B

(t)
M ]],Xi

〉
,

construct a pm ×R matrix D
(t)
m by

D(t)
m =

1

n

n∑
i=1

yiφ
′
δ

{
yiκ

(t)
i

}
(Xi)(m)(

B
(t)
M ◦ . . . ◦B(t)

m+1 ◦B
(t)
m−1 ◦ . . . ◦B

(t)
1

)
+ 2λB(t)

m ,

and further zero out the first row of D
(t)
m for each m =

1, 2, . . . ,M − 1 to ensure the linear constraint in SB contin-
ues to be satisfied by the new solution. Thus, the gradient
∇C(γ(t)) ∈ R

R
∑

pm+p0+1 is given by(
1

n

n∑
i=1

yiφ
′
δ

{
yiκ

(t)
i

}
,
1

n

n∑
i=1

yiφ
′
δ

{
yiκ

(t)
i

}
z�i + 2λ(α(t))�,

vec(D
(t)
1 )�, vec(D

(t)
2 )�, . . . , vec(D

(t)
M )�

)
.

The step size dt is determined according to the Barzilai-
Borwein rule [2] and backtracking; specifically, let dt =
0.5lat where

at =
‖γ(t) − γ(t−1)‖2F

〈γ(t) − γ(t−1),∇C(γ(t))−∇C(γ(t−1))〉

with l being the smallest integer such that

C(γ(t+1)) ≤C(γ(t)) +
〈
∇C(γ(t)),γ(t+1) − γ(t)

〉
+

1

2dt

∥∥∥γ(t+1) − γ(t)
∥∥∥2
2
.

After the algorithm converges, we obtain the solution γ̂
and retrieve the corresponding units α̂0, α̂, B̂1, B̂2, . . . , B̂M .
We further swap the columns of B̂M to satisfy the inequal-
ity constraint in SB. To be specific, find a permutation
τ : {1, 2, . . . , R} → {1, 2, . . . , R} such that the elements in

the first row of B̂M follow β̂
Mτ(1)
1 ≥ β̂

Mτ(2)
1 ≥ . . . ≥ β̂

Mτ(R)
1 .

We thus use τ to permute all the matrices B̂1, B̂2, . . . , B̂M

so the objective value is unchanged.
The proximal gradient descent algorithm can be further

accelerated. Since problem (2.5) is nonconvex, we apply
the monotone accelerated proximal gradient (MAPG) al-
gorithm, which is developed in [21] as a special version of
Nesterov’s acceleration [28]. In addition, we also employ a
warm-start strategy to solve problem (2.5) with a decreasing
sequence of tuning parameters: λ1 > λ2 > . . . > λL > 0. For
each l > 1, the solution obtained for each λl−1 is employed
as the initial value for λl. We use five initial random starts
for λ1 to alleviate the issue of local minima. For space con-
cern, we do not give the derivation of the MAPG algorithm
while we present detailed pseudo-code in Algorithm 1.

The convergence analysis is given in Lemma 1, which fol-
lows from Theorem 1 of [21]. The proof is omitted in this
work.
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Algorithm 1 Monotone Accelerated Proximal Gradient Descent for DCT-SVM

Input: y ∈ {−1, 1}n, z ∈ R
n×p, X ∈ R

n×p1×p2×...×pM , δ > 0, and λ1 > λ2 > . . . > λL > 0.

Output: α̂
[l]
0 , α̂[l], B̂

[l]
1 , B̂

[l]
2 , . . . , B̂

[l]
M for each l.

1: Get the density-convoluted SVM loss φδ(t) in (2.3) and the first-order derivative φ′
δ(t).

2: for l = 1, . . . , L do
3: if l > 1 then
4: Initialize α

(0)
0 = α̂

[l−1]
0 , α(0) = α̂[l−1], B

(0)
1 = B̂

[l−1]
1 , B

(0)
2 = B̂

[l−1]
2 , . . . ,B

(0)
M = B̂

[l−1]
M .

5: else
6: Initialize α

(0)
0 , α(0), B

(0)
1 ,B

(0)
2 , . . . ,B

(0)
M from N(0, 1) and set the first row of each B

(0)
m , m = 1, 2, . . . ,M − 1, to be one.

Swap the columns of B
(0)
M to satisfy the inequality constraint in SB and adjust B

(0)
1 ,B

(0)
2 , . . . ,B

(0)
M−1 in the same way with

B
(0)
M .

7: end if
8: Assemble γ(0) according to (4.1).

9: Set θ̃
(0)

= γ(1) = γ(0). Let �0 = 0 and �1 = 1.
10: for t = 1, 2, . . . do
11: Let �t+1 = (1 +

√
1 + 4�2t )/2.

12: Set θ(t) = γ(t) +
�t−1

�t
(θ̃

(t) − γ(t)) +
�t−1−1

�t
(γ(t) − γ(t−1)).

13: Compute d̃t = ‖θ̃(t) − θ(t−1)‖2F/〈θ̃
(t) − θ(t−1),∇C(θ̃

(t)
)−∇C(θ(t−1))〉.

14: repeat
15: d̃t ← d̃t/2.

16: until C(θ̃
(t+1)

) ≤ C(θ(t)) + 〈∇C(θ(t)), θ̃
(t+1) − θ(t)〉+ 1

2d̃t
‖θ̃(t+1) − θ(t)‖2F.

17: Let θ̃
(t+1)

= θ(t) − d̃t∇C(θ(t)).
18: Compute d̄t = ‖γ̃(t) − γ(t−1)‖2F/〈γ̃(t) − γ(t−1),∇C(γ̃(t))−∇C(γ(t−1))〉.
19: repeat
20: d̄t ← d̄t/2.
21: until C(γ̃(t+1)) ≤ C(γ(t)) + 〈∇C(γ(t)), γ̃(t+1) − γ(t)〉+ 1

2d̃t
‖γ̃(t+1) − γ(t)‖2F.

22: Let γ̃(t+1) = γ(t) − d̄t∇C(γ(t)).

23: if C(γ̃(t+1)) ≤ C(θ̃
(t+1)

) then
24: γ(t+1) = γ̃(t+1).
25: else
26: γ(t+1) = θ̃

(t+1)
.

27: end if
28: Retrieve α

(t+1)
0 , α(t+1), B

(t+1)
1 ,B

(t+1)
2 , . . . ,B

(t+1)
M from γ(t+1) according to (4.1).

29: if The KKT condition of problem (2.5) is satisfied then

30: Swap the columns of B
(t+1)
M to satisfy the inequality constraint in SB and adjust B

(t+1)
1 ,B

(t+1)
2 , . . . ,B

(t+1)
M−1 in the same

way with B
(t+1)
M .

31: Let α̂
[l]
0 = α

(t+1)
0 , α̂[l] = α(t+1), B̂

[l]
1 = B

(t+1)
1 , B̂

[l]
2 = B

(t+1)
2 , . . . , B̂

[l]
M = B

(t+1)
M .

32: break
33: end if
34: if l < 2 then
35: for k = 1, 2, 3, 4 do
36: Repeat lines 6 - 33. Update the solution α̂

[1]
0 , α̂[1], B̂

[1]
1 , B̂

[1]
2 , . . . , B̂

[1]
M if the objective value is smaller.

37: end for
38: end if
39: end for
40: end for

Lemma 1. Let γ� be any accumulation point of the se-
quence {γ(t)} obtained from Algorithm 1, then 0 ∈ ∇F (γ�).

5. NUMERICAL STUDIES

5.1 Simulations

In this section, we examine the performance of DCT-
SVM. We use extensive numerical experiments to perform

the following tasks: (1) compare the performance of DCT-
SVM with different choices of δ and as well as a data-
driven δ from cross-validation; (2) study the performance
of DCT-SVM using Gaussian and Epanechnikov kernels;
(3) investigate the united framework of tensor large-margin
classifiers with examples of the SVM, logistic regression,
and Huberized SVM; (4) demonstrate the superior perfor-
mance of DCT-SVM over popular state-of-the-art classifica-
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Table 1. Example 1: the logit model. Classification error (in percentage) of large-margin tensor classifiers including DCT-SVM
with δ = 1, 0.1, 0.01 using Gaussian kernels (denoted by SVMG

δ=1, SVM
G
δ=0.1, SVM

G
δ=0.01, respectively), tensor Huberized

SVM (HSVM), tensor logistic regression (logit), DCT-SVM using a CV-tuned data-driven δ with Gaussian kernels (SVMG
δ-CV),

and data-driven DCT-SVM with Epanechnikov kernels (SVME
δ-CV). In each situation, the best method is marked by a black

box. All the quantities are averaged over 50 runs and the standard errors are given in parentheses

n p SVMG
δ=1 SVMG

δ=0.1 SVMG
δ=0.01 HSVM logit SVMG

δ-CV SVME
δ-CV

200 20 14.31 23.03 27.48 29.05 17.60 14.78 15.78
(0.83) (1.60) (1.37) (1.43) (1.28) (0.96) (0.34)

50 26.00 29.72 29.39 34.13 25.54 26.41 26.82
(0.61) (0.86) (0.91) (0.86) (0.74) (0.71) (0.69)

100 30.78 34.55 34.49 34.15 29.21 30.58 33.49
(0.53) (0.80) (0.92) (0.73) (0.50) (0.51) (0.62)

400 20 9.41 13.42 19.36 19.99 10.97 9.41 10.26
(0.60) (1.29) (1.64) (1.75) (1.14) (0.60) (0.21)

50 15.55 15.97 16.40 19.31 15.77 15.55 15.78
(0.28) (0.49) (0.58) (0.65) (0.30) (0.28) (0.34)

100 20.68 22.05 21.57 22.11 20.17 20.68 21.70
(0.31) (0.44) (0.45) (0.43) (0.30) (0.31) (0.46)

600 20 7.22 8.55 12.19 12.23 6.55 7.26 8.12
(0.53) (0.78) (1.24) (1.34) (0.17) (0.53) (0.20)

50 12.13 12.10 11.98 13.31 12.34 12.13 11.87
(0.20) (0.22) (0.20) (0.25) (0.19) (0.20) (0.22)

100 15.72 15.71 15.59 16.49 15.92 15.72 15.83
(0.28) (0.34) (0.31) (0.38) (0.29) (0.28) (0.30)

800 20 5.90 7.24 10.31 9.60 5.97 5.91 6.86
(0.44) (0.61) (1.20) (1.07) (0.47) (0.45) (0.14)

50 9.57 9.57 9.75 9.93 9.56 9.57 9.85
(0.15) (0.14) (0.15) (0.14) (0.16) (0.15) (0.14)

100 12.66 12.93 12.82 13.01 13.18 12.66 12.85
(0.23) (0.36) (0.35) (0.29) (0.24) (0.23) (0.31)

1000 20 4.78 5.82 9.75 6.64 4.86 4.78 6.70
(0.12) (0.18) (1.10) (0.13) (0.15) (0.12) (0.17)

50 8.34 9.03 8.94 9.42 8.27 8.34 8.13
(0.13) (0.54) (0.53) (0.53) (0.14) (0.13) (0.17)

100 10.68 10.42 10.72 10.62 11.43 10.68 11.09
(0.20) (0.25) (0.24) (0.27) (0.17) (0.20) (0.27)

tion methods.

Example 1 In this example, simulated data are generated
from the logistic regression model. In particular, for each
i = 1, 2, . . . , n, yi is drawn from the Bernoulli distribution
with the probability P (yi = 1) = 1/(1 + exp(−πi)), where
πi = 〈B,Xi〉 + z�i α + 1. Each element in Xi ∈ R

p×5×2 and
zi ∈ R

p follows the standard Gaussian distribution. For the
true parameters, the tensor coefficient B ∈ R

p×5×2 is given
by

(5.1) B =

2∑
r=1

β(1r) ◦ β(2r) ◦ β(3r),

where β(11) ∈ R
p has elements independently drawn

from N(1, 0.05), β(12) ∈ R
p has elements generated from

N(−2, 0.05), both β(21) ∈ R
5 and β(22) ∈ R

5 have elements

from N(0, 1), β(31) = (−1, 1)�, and β(32) = (−1, 0.5)�; the
vector-valued coefficient α ∈ R

p is given by independently
generating each element from N(3, 1). In this example, we
vary the sample size n from {200, 400, 600, 800, 1000} and
the dimension of the first tensor mode p from {20, 50, 100}.
The Bayes error is around 2%.

We first fit our DCT-SVM using the Gaussian kernel with
the bandwidth δ = 1, 0.1, and 0.01. For each classifier, using
five-fold cross-validation, we select the tensor rank R from
{2, 3, 4} and the shrinkage parameter λ from 10 candidate
values that are uniformly distributed on the logarithm scale
between 1 and 10−6. The classification errors are summa-
rized in Table 1. We see DCT-SVM with δ = 1 is slightly
better than the other two with marginal difference. This
observation aligns with our theory that δ = O(1) suffices
to allow the method to work. Yet despite the insensitive
performance of DCT-SVM to δ, we propose a data-driven
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Figure 2. Example 1: the logit model. Classification error (in percentage) of DCT-SVM using the Gaussian kernel with a
data-driven δ (denoted by DCT-SVM, which is the same method as SVMG

δ-CV in Table 1), as compared with support tensor
machines (STM), CATCH, boosting, random forest (denoted by RF), kernel logistic regression (denoted by K-logit), kernel

SVM (denoted by K-SVM), and neural networks (denoted by NN).

strategy by treating δ as a hyperparameter to be selected by
CV, and we see its performance is in par with the narrow
winner, DCT-SVM with δ = 1. Hence the data-driven strat-
egy provides practitioners a relatively safe choice of δ. We
further refit DCT-SVM with Epanechnikov kernels, whose
error are higher than Gaussian kernels.

We then use DCT-SVM with the data-driven δ as an
example and compare it with other baseline methods. We
consider two tensor classifiers, the STM, using the Python
library HOTTBOX [18], and CATCH, which extends linear
discriminant analysis to tensor classification and is imple-
mented in the R package catch [29]. These two methods di-
rectly classify the tensor data without vectorization, while
STM cannot fit the vector-valued predictors, so we set its
estimate of α to be zero. We further unfold the tensor data
into vectors and apply several popular vector-valued classi-
fiers. We fit boosting with the exponential loss, i.e., the Ad-
aBoost, using the R package gbm [12] with 500 decision trees
and set the shrinkage parameter to be 0.01. We fit random
forest using the R package randomForest [25] with 500 de-
cision trees. We use the R package magicsvm [43] to fit both
kernel logistic regression and kernel SVM, employing Gaus-
sian kernels and using five-fold cross-validation to select the
tuning parameter λ from 100 candidates ranging from 103

to 10−3. We fit neural networks using the R package nnet

[39] with two layers and ten units in the hidden layer. As
shown in Figure 2, our DCT-SVM clearly outperforms all
the baseline classifiers in this example.

Figure 3. Convergence plot for solving a DCT-SVM model
using Algorithm 1.

We further present a convergence plot to visualize the
algorithmic convergence. We use Algorithm 1 to compute
a DCT-SVM model for simulated data in Example 1 with
n = 600 and p = 50. As shown in Figure 3, the objective
value monotonically decreases.

Example 2 In this example, the tensor predictors from each
class are generated from the tensor normal distribution:

X|(y = k) ∼ TN(Uk,Σ1,Σ2, . . . ,ΣM ), k = 1, 2,

that is, each Xi in the class k is independently generated

from Uk + C ×1 Σ
1/2
1 ×2 Σ

1/2
2 . . . ×M Σ

1/2
M , where Uk ∈

R
p1×p2×...×pM is the mean tensor and C ∈ R

p1×p2×...×pM
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Table 2. Example 2: tensor normal distributions. Classification error (in percentage) of large-margin tensor classifiers including
DCT-SVM with δ = 1, 0.1, 0.01 using Gaussian kernels (denoted by SVMG

δ=1, SVM
G
δ=0.1, SVM

G
δ=0.01, respectively), tensor

Huberized SVM (HSVM), tensor logistic regression (logit), DCT-SVM using a CV-tuned data-driven δ with Gaussian kernels
(SVMG

δ-CV), and data-driven DCT-SVM with Epanechnikov kernels (SVME
δ-CV). In each situation, the best method is marked

by a black box. All the quantities are averaged over 50 runs and the standard errors are given in parentheses

n ρ SVMG
δ=1 SVMG

δ=0.1 SVMG
δ=0.01 HSVM logit SVMG

δ-CV SVME
δ-CV

200 0.1 24.23 25.60 26.96 27.46 23.47 24.19 27.83
(0.66) (0.63) (0.47) (0.39) (0.69) (0.66) (0.69)

0.5 27.69 28.53 28.66 28.03 27.47 28.43 39.15
(0.36) (0.45) (0.41) (0.26) (0.40) (0.45) (0.67)

0.7 29.24 29.22 28.58 28.05 28.18 29.37 42.83
(0.54) (0.46) (0.35) (0.27) (0.40) (0.52) (0.46)

400 0.1 18.60 22.19 24.16 23.97 20.04 18.83 20.47
(0.76) (0.80) (0.70) (0.73) (0.85) (0.78) (0.28)

0.5 25.19 25.35 25.59 26.55 25.43 25.22 31.94
(0.41) (0.38) (0.34) (0.25) (0.42) (0.42) (0.65)

0.7 26.44 26.30 26.59 26.68 26.23 26.33 38.96
(0.26) (0.26) (0.27) (0.24) (0.32) (0.25) (0.56)

600 0.1 16.22 20.12 21.70 23.25 17.47 16.21 18.26
(0.69) (0.82) (0.80) (0.72) (0.87) (0.69) (0.22)

0.5 23.92 24.77 24.77 25.77 23.64 24.12 28.50
(0.45) (0.39) (0.37) (0.26) (0.48) (0.44) (0.38)

0.7 25.15 25.70 25.84 26.20 25.63 25.33 36.95
(0.24) (0.24) (0.23) (0.21) (0.23) (0.23) (0.65)

800 0.1 13.83 17.44 19.34 18.70 16.50 14.13 17.39
(0.46) (0.88) (0.92) (0.88) (0.82) (0.52) (0.15)

0.5 22.63 23.66 24.22 24.89 22.84 22.97 27.84
(0.50) (0.46) (0.47) (0.36) (0.51) (0.49) (0.44)

0.7 24.93 25.52 25.61 26.00 24.93 25.05 34.99
(0.30) (0.27) (0.25) (0.22) (0.31) (0.30) (0.66)

1000 0.1 14.78 18.07 20.51 20.94 16.36 14.78 17.11
(0.65) (0.90) (0.93) (0.91) (0.82) (0.65) (0.17)

0.5 23.52 24.96 25.33 25.57 24.01 24.06 27.67
(0.45) (0.32) (0.30) (0.31) (0.47) (0.41) (0.52)

0.7 25.17 25.52 25.58 25.65 25.11 25.37 33.92
(0.27) (0.23) (0.25) (0.23) (0.30) (0.26) (0.56)

with each element drawn from the standard Gaussian dis-
tribution. The vector-valued predictor is given by

u|(y = k) ∼ Np(μk, Ip), k = 1, 2.

We set M = 3 and X ∈ R
p×5×2, and define B in the

same way with (5.1) and scale it to have the unit Forbe-
nius norm. We let U1 = B ×1 Σ1 ×2 Σ2 ×3 Σ3 and set
all elements in U2 to be zero. We let Σ1 have an auto-
regressive structure such that (Σ1)i,j = (−ρ)|i−j|, and let
Σ2 and Σ3 have a composite symmetric structure with all
diagonals to be 1 and off-diagonals 0.3. In this example, we
fix p = 20 and vary ρ from {0.1, 0.5, 0.7}, giving the Bayes
error as 14.0%, 23.4%, and 28.9%, respectively. We vary n
from {200, 400, 600, 800, 1000} and consider balanced classi-
fications such that

∑n
i=1 Iyi=1 = n/2.

We first fit tensor large-margin classifiers including DCT-

SVM with δ = 1, 0.1, 0.01 using Gaussian kernels, DCT-
SVM with the data-driven δ using Gaussian and Epanech-
nikov kernels, tensor logistic regression, and tensor Huber-
ized regression. From the classification errors exhibited in
Table 2, we observe that the choice of δ in DCT-SVM does
not contribute to significantly different classification accu-
racy, and the DCT-SVM with the data-driven δ performs
similarly with δ = 1. Gaussian kernels works better than
Epanechnikov kernels for DCT-SVM. In addition, tensor lo-
gistic regression has the best performance in several cases;
tensor Huberized SVM delivers the best classification when
ρ = 0.7 and n = 200.

We further compare DCT-SVM with the data-driven δ
with other state-of-the-art classifiers. From Figure 4, we see
our proposed method yields the lowest error in all the sit-
uations except for ρ = 0.1 and n = 200, 400 where STM
performs the best; overall the three tensor-based classifiers,

240 B. Wang et al.



Figure 4. Example 2: tensor normal distributions. Classification error (in percentage) of DCT-SVM using the Gaussian kernel
with a data-driven δ (denoted by DCT-SVM, which is the same method as SVMG

δ-CV in Table 2), as compared with support
tensor machines (STM), CATCH, boosting, random forest (denoted by RF), kernel logistic regression (denoted by K-logit),

kernel SVM (denoted by K-SVM), and neural networks (denoted by NN).

DCT-SVM, STM, and CATCH performs much better than
the others. The simulation results reveal the great advan-
tages of the tensor classification methods that exploit spe-
cial tensor structures rather than resort to the vectorization.

5.2 A real application to online advertising

In this section, we study a real-world online advertising
application. Online advertising is playing an essential role
in attracting customers and securing ad revenues using the
internet as a medium. As reported in [9], over 521 billion
dollars were spent on online ads in 2021 worldwide; in 2026,
the number is projected to be 876 billion dollars and the
online ad spending will take about 75% of total media ad
spending. For online advertising, typically, a successful ad
conversion goes through the process of an impression, when
the ad is displayed, a click, when the ad gets clicked on, and
a conversion, when the ad eventually leads to a specified
action such as a transaction or an email sign-up. To gauge
the success of online ads, one of the most important metrics
is the click-through rate (CTR), which is the ratio of the
number of clicks to the number of impressions. CTR largely
affects the revenue, as the revenue per one thousand impres-
sions (RPM) is proportional to CTR multiplied by the cost
per click. Also, it is our common belief that not all ads are
effectively impacting the CTR [6, 47]. Hence it is crucial to
building a model to study how the impressions on different
ad campaigns affect the CTR, and it is profitable for online
advertising companies to efficiently deliver ads to intended
customers and maintain a high average CTR.

To enhance the performance of online advertising, we col-
lected the information of 136 ad campaigns from a premium

online advertising company. To protect private and sensi-
tive information, all the reported data and results in this
work are deliberately incomplete, anonymized, and are not
related to the real portfolio of the company at any partic-
ular time. The selected 136 ad campaigns were randomly
numbered with ID 1, 2, . . . , 136 without revealing any iden-
tifying information. We recorded the impression of the ad
campaigns from 672 hours, and the users in each hour form a
user group. We summarized the number of impressions and
clicks of the campaigns delivered to each of the three de-
vices, namely phones, tablets, and personal computers, and
older and younger users that are partitioned by the median
age of all the users. As a consequence, each user group has
a tensor-valued impression Xi ∈ R

136×3×2, i = 1, 2, . . . , 672.
For each user group, we calculated the overall CTR, the ra-
tio of the total clicks to the total impressions, and our goal
is to classify if the overall CTR of a user group is above
the company-wise average (coded the response label as +1)
or below that (coded as −1). By employing powerful classi-
fication algorithms to solve this classification problem, on-
line advertising companies can optimize the ads delivery and
thus make profits.

Among 672 user groups, we randomly selected 80% of
them as the training data to train and tune all the classifi-
cation methods, and reserved the remaining 20% of the user
groups as the test data. We used the proposed DCT-SVM
method with a Gaussian kernel and used five-fold cross-
validation to select the tensor rank R from {2, 3, 4}, the
regularization parameter λ from ten numbers uniformly dis-
tributed between 10−6 and 1 on the logarithm scale, and the
data-driven δ from {1, 0.1, 0.01}. The performance of DCT-
SVM is compared against all the baseline methods used in
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Figure 5. A heatmap of the coefficients of density-convoluted tensor SVM for classifying the overall CTR of an online
advertising application. Each tile represents a tensor coefficient associated with an ad, device, and age group combination.
The effect of each combination on the overall CTR is reflected by the darkness of the tiles. The IDs of all the ad campaigns

have been intentionally renumbered for concerns of confidentiality.

the simulation studies. DCT-SVM gives the lowest classi-

fication error on the test data, 8.89%, which follows ran-

dom forest with the test error 13.33% and adaBoost with

15.56%. The test errors of neural nets, kernel logistic regres-

sion, CATCH, and kernel SVM, are 20.00%, 20.74%, 22.96%,

and 23.71%, respectively. In this example, the classification

accuracy of DCT-SVM outperforms the vector-based base-

line methods, most of which produce nonlinear classifiers.

Figure 5 shows a heatmap of the tensor coefficients to

visualize the effect of each ad, device, and age group combi-

nation on the overall CTR. With all the 136 ad campaigns

aligned in the horizontal axis and the six combinations of

devices and age groups in the vertical axis, the darkness

of the tiles depicts the corresponding tensor coefficients of

the DCT-SVM model. In particular, a darker tile implies a

larger change of the discriminant function, which tends to

associate with a positive label, i.e., an overall CTR above

the average. From Figure 5, we clearly observe the low-rank

tensor structure, as the device and age group combinations

share the same pattern of the coefficients of all the ad cam-

paigns. The overall CTR is more sensitive to the ads being

placed on phones than tablets and personal computers, while

the ads delivered to users in different age groups do not elicit

much different effects on the overall CTR. According to the

linear nature of our DCT-SVM model, the overall CTR can

be improved in the largest extent by adding the impression

of the ad campaign with ID 58 or declining the campaign

with ID 116 when they are delivered on phones.

6. DISCUSSION

In this paper, we have proposed a new classifier DCT-
SVM for tensor data classification. DCT-SVM is motivated
by smoothing the SVM loss to reduce the computational
burden. Treating DCT-SVM as a new classifier rather than a
computational remedy of tensor SVM and rigorously proved
the convergence rate of risk using empirical process theory.
We have developed an efficient algorithm and demonstrated
the superior performance of DCT-SVM over many popular
classifiers using extensive numerical studies.

In this work, we have employed CP decomposition to the
tensor coefficients of the classifiers. It is known that Tucker
decomposition is a more flexible low-rank tensor decomposi-
tion. It is interesting to extend the proposed methods with
Tucker decomposition. In addition, future study can work
towards the high-dimensional analysis of DCT-SVM, by im-
posing sparse penalties to select important variables from
the tensor data. Further, due to the non-convexity of the ob-
jective function, Algorithm 1 does not guarantee converging
to the global minimizer, and the strategy of multiple ran-
dom initial starts has been adopted to address this issue.
It will be interesting to investigate the global optimality of
DCT-SVM through the landscape analysis [e.g., 23, 26].

A. APPENDIX: TECHNICAL PROOFS

Two lemmas for empirical processes are first presented
and they are useful for proving Theorem 1.

242 B. Wang et al.



Lemma 2. (The symmetrization inequality; see for in-
stance, Lemma 2.3.1 in [36]) Let X1, X2, . . . , Xn be iid
random variables defined on a probability space and let
ε1, ε2, . . . , εn be iid Rademacher random variables, i.e.,
P (εi = 1) = P (εi = −1) = 1/2. With a class of measur-
able functions H, it holds that

E

{
sup
h∈H

1

n

n∑
i=1

|h(Xi)− E[h(Xi)]|
}

≤2E

{
sup
h∈H

∣∣∣∣∣ 1n
∑
i=1

εih(Xi)

∣∣∣∣∣
}
.

Lemma 3. (The contraction inequality; see for instance,
Theorem 4.12 in [20]) Let φ be a contraction, that is,
|φ(s1) − φ(s2)| ≤ |s1 − s2| for all s1, s2 ∈ R and φ(0) = 0.
Then with iid Rademacher random variables ε1, ε2, . . . , εn
and a sequence of constants s1, s2, . . . , sn, it holds that

E

∣∣∣∣∣ 1n
n∑

i=1

εiφ(si)

∣∣∣∣∣ ≤ 2E

∣∣∣∣∣ 1n
n∑

i=1

εisi

∣∣∣∣∣ .
Proof of Theorem 1. By definition, we have

1

n

n∑
i=1

φ
{
yi

(
α̂0 + z�i α̂+ 〈B̂,Xi〉

)}

+ λ‖α̂‖22 + λ

(
M∑

m=1

‖B̂m‖2
)

≤ 1

n

n∑
i=1

φ
{
yi
(
α∗
0 + z�i α

∗ + 〈B∗,Xi〉
)}

+ λ‖α∗‖22 + λ

(
M∑

m=1

‖B∗
m‖2

)
.

By convexity of φ(·) and mean value theorem, this further
implies

1

n

n∑
i=1

c′′i

[
(α̂0 − α∗

0) + z�i (α̂−α∗) + 〈B̂ − B∗,Xi〉
]2

+
1

n

n∑
i=1

c′iyi
[
(α̂0 − α∗

0) + z�i (α̂−α∗) + 〈B̂ − B∗,Xi〉
]

≤λ(‖α∗‖22 − ‖α̂‖22) + λ

(
M∑

m=1

‖B∗
m‖2 − ‖B̂m‖2

)
,

where

c′′i = φ′′
{
yi

(
α̃0 + z�i α̃+ 〈B̃,Xi〉

)}
,

c′i = φ′ {yi (α∗
0 + z�i α

∗ + 〈B∗,Xi〉
)}

,

for i = 1, 2, . . . , n, and

(α̃0, α̃, B̃) = c0(α̂0, α̂, B̂) + (1− c0)(α
∗
0,α

∗,B∗)

with some c0 ∈ [0, 1].
By Assumption 1 and our setting, there exists a constant

C0 > 0 such that min1≤i≤n c
′′
i > C0. Consequently, (A.1)

implies

C0

n

n∑
i=1

[
(α̂0 − α∗

0) + z�i (α̂−α∗) + 〈B̂ − B∗,Xi〉
]2

+
1

n

n∑
i=1

c′iyi
[
(α̂0 − α∗

0) + z�i (α̂−α∗) + 〈B̂ − B∗,Xi〉
]

≤λ(‖α∗‖22 − ‖α̂‖22) + λ

(
M∑

m=1

‖B∗
m‖2 − ‖B̂m‖2

)
.

Define events

E1 :=

{∣∣∣∣∣ 1n
n∑

i=1

φ′ {yi (α∗
0 + z�i α

∗ + 〈B∗,Xi〉
)}

yi

∣∣∣∣∣ ≤ λ

2

}
,

E2 :=

{∥∥∥∥∥ 1n
n∑

i=1

φ′ {yi (α∗
0 + z�i α

∗ + 〈B∗,Xi〉
)}

yizi

∥∥∥∥∥ ≤ λ

2

}
,

E3 :=

{∥∥∥∥∥ 1n
n∑

i=1

φ′ {yi (α∗
0 + z�i α

∗ + 〈B∗,Xi〉
)}

yiXi

∥∥∥∥∥ ≤ λ

2

}
,

and let E := E1∩E2∩E3. We derive upper bounds for P(Ec
1),

P(Ec
2), P(Ec

3). Note that by definition of (α∗
0,α

∗,B∗), we
have

E
[
φ′ {y (α∗

0 + z�α∗ + 〈B∗,X〉
)}

y
]
= 0,

E
[
φ′ {y (α∗

0 + z�α∗ + 〈B∗,X〉
)}

yz
]
= 0,

E
[
φ′ {y (α∗

0 + z�α∗ + 〈B∗,X〉
)}

yX
]
= 0.

By Hoeffding’s inequality, we first have

P(Ec
1) ≤ 2 exp

{
−nλ2

8

}
.(A.1)

Next, we upper bound P(Ec
2). Note that for any v ∈ R

p0

such that ‖v‖ ≤ 1; since |φ′(·)| ≤ 1,

Var
(
φ′ {yi (α∗

0 + z�i α
∗ + 〈B∗,Xi〉

)}
yz�v

)
≤ E[(z�v)2] ≤ Π2.

Let σ1, . . . , σn be i.i.d. Rademacher random variables (i.e.,
P(σi = 1) = P(σi = −1) = 1/2), which are independent
from all the other random elements. Now, by Lemma 2.3.7 in
[36], bounded differences inequality (for instance see Corol-
lary 2.21 in [40]), we have

P(Ec
2) = P

(
sup

v∈Rp0 :‖v‖≤1

∣∣∣∣∣ 1n
n∑

i=1

c′iyiz
�
i v

∣∣∣∣∣ > λ

2

)

≤ 2

1− 16Π2

nλ2

P

(∥∥∥∥∥ 1n
n∑

i=1

σic
′
iyizi

∥∥∥∥∥ >
λ

8

)
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≤ 2

1− 16Π2

nλ2

E

[
2 exp

{
− n2λ2

128
∑n

i=1 ‖zi‖2
}]

≤ 4

1− 16Π2

nλ2

exp

{
− nλ2

128Π2

}
.(A.2)

The bound for P(Ec
3) can be obtained with the same tech-

nique, i.e., we have

P(Ec
3) ≤

4

1− 16Π2

nλ2

exp

{
− nλ2

128Π2

}
.(A.3)

Combining (A.1), (A.2), and (A.3) and applying an union
bound, we have
(A.4)

P(Ec) ≤ 2 exp

{
−nλ2

8

}
+

8

1− 16Π2

nλ2

exp

{
− nλ2

128Π2

}
.

Under E , (A.1) implies

C0

n

n∑
i=1

[
(α̂0 − α∗

0) + z�i (α̂−α∗) + 〈B̂ − B∗,Xi〉
]2

− λ

2

[
|α̂0 − α∗

0|+ ‖α̂−α∗‖+ ‖B̂ − B∗‖
]

≤λ(‖α∗‖22 − ‖α̂‖22) + λ

(
M∑

m=1

‖B∗
m‖2 − ‖B̂m‖2

)
,

and then the above inequality implies that there exists some
constant G0 > 0 such that under E ,
(A.5)

C0

n

n∑
i=1

[
(α̂0 − α∗

0) + z�i (α̂−α∗) + 〈B̂ − B∗,Xi〉
]2

≤ λG0.

Define 
(α0,α,B) = 1
n

∑n
i=1 φ

{
yi
(
α0 + z�i α+ 〈B,Xi〉

)}
for any (α0,α,B). Also, define

D =

{
(α0,α,B) ∈ Θ :

C0

n

n∑
i=1

c21i ≤ λG0

}
,

where for i = 1, 2, . . . , n,

ci1 = (α0 − α∗
0) + z�i (α−α∗) + 〈B − B∗,Xi〉.

Let G(α0,α,B) = 
(α0,α,B)− 
(α∗
0,α

∗,B∗). Let A be the
sub-σ field generated by {zi,Xi}ni=1.

Let

X1 = sup
(α0,α,B)∈D

∣∣G(α0,α,B)− E[G(α0,α,B)|A]
∣∣.

We give an upper bound for E[X1]. Recall that σ1, . . . , σn

are i.i.d. Rademacher random variables which are in-
dependent from all the other random elements. By the
symmetrization inequality (Lemma 2) and the contraction

inequality (Lemma 3), |φ′(·)| ≤ 1 and Cauchy-Schwarz

inequality, we have

E[X1] =E[E[X1|A]]

≤2E

[
sup

(α0,α,B)∈D

∣∣∣∣ 1n
n∑

i=1

σi

[
φ
{
yi
(
α0 + z�i α+ 〈B,Xi〉

)}

− φ
{
yi
(
α∗
0 + z�i α

∗ + 〈B∗,Xi〉
)} ]∣∣∣∣

]

≤4E

[
sup

(α0,α,B)∈D

∣∣∣∣ 1n
n∑

i=1

σici1

∣∣∣∣
]

≤4E

[
sup

(α0,α,B)∈D

√√√√ 1

n

n∑
i=1

c2i1

]

≤4

√
λ
G0

C0
,

where the last step is by the definition of D. This implies

that X1 = Op(
√
λ).

Next, let

X2 = sup
(α0,α,B)∈D

∣∣∣E[G(α0,α,B)|A]− E[G(α0,α,B)]
∣∣∣.

We give an upper bound for E[X2]. Let

Φ(z,X , α0,α,B) := E

[
φ{y(α0 + z�α+ 〈B,X〉)}

∣∣∣z,X ],
then

E[G(α0,α,B)|A]

=
1

n

n∑
i=1

(Φ(zi,Xi, α0,α,B)− Φ(zi,Xi, α
∗
0,α

∗,B∗))

which again can be viewed as an empirical process. Notice

that Φ(·) depends on (α0,α,B) only through the value of

α0 + z�α + 〈B,X〉. Meanwhile, since |φ′(·)| ≤ 1, for any

(α0,α,B) and (α′
0,α

′,B′), we have

|Φ(z,X , α0,α,B)− Φ(z,X , α′
0,α

′,B′)|

=
∣∣∣E[φ{y(α0 + z�α+ 〈B,X〉)}

− φ{y(α′
0 + z�α′ + 〈B′,X〉)}

∣∣z,X ]∣∣∣
≤|(α0 + z�α+ 〈B,X〉)− (α′

0 + z�α′ + 〈B′,X〉)|,

which means Φ is Lipschitz in the value of α0+z�α+〈B,X〉.
Again, by the symmetrization inequality, the contraction
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inequality, and Cauchy-Schwarz inequality, we have

E[X2] ≤2E

[
sup

(α0,α,B)∈D

∣∣∣∣ 1n
n∑

i=1

σi

[
Φ(zi,Xi, α0,α,B)

− Φ(zi,Xi, α
∗
0,α

∗,B∗)
]∣∣∣∣
]

≤4E

[
sup

(α0,α,B)∈D

∣∣∣∣ 1n
n∑

i=1

σici1

∣∣∣∣
]

≤4E

[
sup

(α0,α,B)∈D

√√√√ 1

n

n∑
i=1

c2i1

]

≤4

√
λ
G0

C0
.

This implies that X2 = Op(
√
λ).

Following (A.1), we know there exists some constant
C1 > 0 such that

G(α̂0, α̂, B̂) ≤ C1λ.(A.6)

Since R(α0,α,B) = E[G(α0,α,B)], by triangle inequal-
ity, (A.5), and (A.6), we have under E ,

R(α̂0, α̂, B̂) ≤ X1 +X2 + C1λ = Op(
√
λ+ λ).

Now, for any ε > 0, the above implies that there exists a
large enough constant T1 > 0 such that

lim sup
n→∞

P
{
R(α̂0, α̂, B̂) > T1(

√
λ+ λ)

}
<

ε

2
+ P(Ec).

(A.7)

Choosing λ =
√
T2/n with large enough T2 > 0 in (A.4),

we have P(Ec) < ε/2. Then (A.7) gives

lim sup
n→∞

P

{
R(α̂0, α̂, B̂) > T1

((
T2

n

) 1
4

+

√
T2

n

)}
< ε.

(A.8)

By the arbitrariness of ε and the order of magnitude of n
in the probability, (A.8) implies R(α̂0, α̂, B̂) = Op(n

− 1
4 ).

The proof is finished.

Proof of Theorem 2. We first give some general formula re-
garding the loss function φ = φδ and its derivatives. Direct
calculation gives

φδ(t) =

∫ 1

−∞

1− u

δ
K

(
t− u

δ

)
du,

φ′
δ(t) = −

∫ 1−t
δ

−∞
K(u)du,

φ′′
δ (t) =

1

δ
K

(
1− t

δ

)
, ∀t ∈ R.

It is straightforward to show that limt→∞ φδ(t) = 0 and
limt→−∞ φδ(t) = ∞. We compute the ψ(·) function and
the H(·) function defined in [1]. Since φδ(·) is convex and

φ′
δ(0) = −

∫ 1
δ

−∞ K(u)du < 0, by Theorem 2 of [1], ψ(θ) =

φδ(0)−H( 1+θ
2 ). For H(·), by definition in [1],

H(η) = inf
α∈R

(
ηφδ(α) + (1− η)φδ(−α)

)
for η ∈ [0, 1]. Let αη = argminα∈R

(
ηφδ(α)+(1−η)φδ(−α)

)
,

whose existence is guaranteed by convexity of φδ(·) and the
fact that φδ(t) → ∞ as t → −∞. So

H(η) = ηφδ(αη) + (1− η)φδ(−αη).(A.9)

Meanwhile, by optimality condition,

ηφ′
δ(αη) = (1− η)φ′

δ(−αη).(A.10)

When η = 1
2 , the above equation is reduced to φ′

δ(α1/2) =
φ′
δ(−α1/2) and we get α1/2 = 0. We now compute ψ(0),

ψ′(0) and ψ′′(0). By definition ψ′(θ) = −1
2H

′( 1+θ
2 ) and

ψ′′(θ) = −1
4H

′′( 1+θ
2 ). Meanwhile, let α′

η be the derivative
of αη with respect to η, we have

H ′(η)

=φδ(αη) + ηφ′
δ(αη)α

′
η − φδ(−αη)− (1− η)φ′

δ(−αη)α
′
η

=φδ(αη)− φδ(−αη),

where the last step is by (A.10), and we have

H ′′(η) = φ′
δ(αη)α

′
η + φ′

δ(−αη)α
′
η.(A.11)

Taking derivative with respect to η on both sides of (A.10),
we have

φ′
δ(αη) + ηφ′′

δ (αη)α
′
η = −φ′

δ(−αη)− (1− η)φ′′
δ (−αη)α

′
η,

which means

α′
η =

−φ′
δ(αη)− φ′

δ(−αη)

ηφ′′
δ (αη) + (1− η)φ′′

δ (−αη)
.

Plugging this into (A.11) we have

H ′′(η) = −
(
φ′
δ(αη) + φ′

δ(−αη)
)2

ηφ′′
δ (αη) + (1− η)φ′′

δ (−αη)
.(A.12)

Hence combining (A.9), (A.11) and (A.12), we have

ψ(0) = φδ(0)−H

(
1

2

)

= φδ(0)−
1

2
φδ(α1/2)−

1

2
φδ(α1/2) = 0,

ψ′(0) = −1

2
H ′
(
1

2

)
= −1

2
(φδ(0)− φδ(0)) = 0,

ψ′′(0) = −1

4
H ′′
(
1

2

)
=

φ′
δ(0)

2

φ′′
δ (0)

> 0.
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Therefore, we have

ψ(t) =
φ′
δ(0)

2

2φ′′
δ (0)

t2 + o(t2)(A.13)

where o(t2) is negligible compared with t2 as t → 0. More-
over, sinceH ′′(·) < 0 by (A.12),H ′(·) is a strictly decreasing
function on (0, 1). Also, H ′(1/2) = 0, so H ′(·) is positive on
(0, 1/2) and negative on (1/2, 1), which means H(·) is in-
creasing on (0, 1/2) and decreasing on (1/2, 1). Thus, ψ(·) is
decreasing on (−1, 0) and increasing on (0, 1). On the other
hand, from (A.10), we know as η → 0, αη → −∞, and as
η → 1, αη → ∞. As a result, we have limθ→−1 ψ(θ) =
limθ→1 ψ(θ) = φδ(0). Combining this and (A.13), it is
straightforward to see that inft∈(−1,1) ψ(t)/t

2 > 0. By The-
orem 1 of [1] we have

ψ
(
R0−1(α̂0, α̂, B̂)

)
≤ R(α̂0, α̂, B̂),

so combining this and previous result we have

R2
0−1(α̂0, α̂, B̂) � R(α̂0, α̂, B̂).

Thus by our Theorem 1, we get R0−1(α̂0, α̂, B̂) = Op(n
− 1

8 ).
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