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Bayesian methods in tensor analysis

Yiyao Shi and Weining Shen
∗

Tensors, also known as multidimensional arrays, are use-
ful data structures in machine learning and statistics. In
recent years, Bayesian methods have emerged as a popular
direction for analyzing tensor-valued data since they pro-
vide a convenient way to introduce sparsity into the model
and conduct uncertainty quantification. In this article, we
provide an overview of frequentist and Bayesian methods
for solving tensor completion and regression problems, with
a focus on Bayesian methods. We review common Bayesian
tensor approaches including model formulation, prior assign-
ment, posterior computation, and theoretical properties. We
also discuss potential future directions in this field.

Keywords and phrases: Imaging analysis, Posterior in-
ference, Recommender system, Tensor completion, Tensor
decomposition, Tensor regression.

1. INTRODUCTION

Tensors, also known as multidimensional arrays, are
higher dimensional analogues of two-dimensional matrices.
Tensor data analysis has gained popularity in many scientific
research and business applications, including medical imag-
ing [8], recommender systems [81], relational learning [97],
computer vision [86] and network analysis [55]. There is a
vast literature on studying tensor-related problems such as
tensor decomposition [49, 74, 93], tensor regression [28, 89],
tensor completion [86], tensor clustering [8, 89], tensor re-
inforcement learning and deep learning [89]. Among them,
tensor completion and tensor regression are two fundamen-
tal problems and we focus on their review in this article.

Tensor completion aims at imputing missing or unob-
served entries in a partially observed tensor. Important ap-
plications of tensor completion include providing personal-
ized services and recommendations in context-aware recom-
mender systems (CARS) [81], restoring incomplete images
collected from magnetic resonance imaging (MRI) and com-
puterized tomography (CT) [23], and inpainting missing pix-
els in images and videos [59, 68]. In this review, we divide
tensor completion methods into trace norm based methods
and decomposition based methods, and introduce common
approaches in each category.

Different from tensor completion, tensor regression inves-
tigates the association between tensor-valued objects and
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other variables. For example, medical imaging data such as
brain MRI are naturally stored as a multi-dimensional array,
and tensor regression methods are applied to analyze their
relationship with clinical outcomes (e.g., diagnostic status,
cognition and memory score) [54, 90]. Based on the role
that the tensor-valued object plays in the regression model,
tensor regression methods can be categorized into tensor
predictor regression and tensor response regression.

Frequentist approaches have been successful in tensor
analysis [102, 8]. In recent years, Bayesian approaches
have also gained popularity as they provide a useful way
to induce sparsity in tensor models and conduct uncer-
tainty quantification for estimation and predictions. In
this article, we will briefly discuss common frequentist ap-
proaches to solve tensor completion and regression prob-
lems and focus on Bayesian approaches. We also review
two commonly used tensor decompositions, i.e., CANDE-
COMP/PARAFAC (CP) decomposition [45] and the Tucker
decomposition [98], since they are the foundations for most
Bayesian tensor models. For example, many Bayesian ten-
sor completion approaches begin with certain decomposition
structure on the tensor-valued data and then use Bayesian
methods to infer the decomposition parameters and im-
pute the missing entries. Based on the decomposition struc-
tures being utilized, we divide these methods into CP-based,
Tucker-based, and nonparametric methods. For tensor re-
gression methods, we classify the Bayesian tensor regression
into Bayesian tensor predictor regression and Bayesian ten-
sor response regression. For each category, we review the
prior construction, model setup, posterior convergence prop-
erty and sampling strategies.

The rest of this article is organized as follows. Sec-
tion 2 provides a background introduction to tensor nota-
tions, operations and decompositions. Section 3 and 4 re-
view common frequentist approaches for tensor completion
and regression problems, respectively. Section 5 and 6 re-
view Bayesian tensor completion and regression approaches,
including the prior construction, posterior computing, and
theoretical properties. Section 7 provides concluding re-
marks and discusses several future directions for Bayesian
tensor analysis. Figure 1 shows an outline of our review.

2. BACKGROUND

In this section, we follow [49] and introduce notation, def-
initions, and operations related to tensors. We also discuss
two popular tensor decomposition approaches and highlight
some challenges in tensor analysis.
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Figure 1. Outline of this survey.

Figure 2. An example of first, second and third-order tensors.

2.1 Basics

Notation: A tensor is a multidimensional array. The di-

mension of a tensor is also known as mode, way, or order. A

first-order tensor is a vector; a second-order tensor is a ma-

trix; and tensors of order three and higher are referred to as

higher-order tensors (see Figure 2). In this review, a tensor

is denoted by Euler script letter X ∈ R
n1×n2×...×nd . Here d

is the order of tensor X , and nk is the marginal dimension

of the kth mode (k = 1, 2, ..., d). The (i1, i2, ..., id)th element

of the tensor X is denoted by xi1i2...id for ik = 1, 2, ..., nk

and k = 1, 2, ..., d. Subarrays of a tensor are formed through

fixing a subset of indices in the tensor. A fiber is a vector

defined by fixing all but one indices of a tensor, and a slice is

a matrix created by fixing all the indices except for those of

two specific orders in the tensor. For instance, a third-order

tensor X ∈ R
n1×n2×n3 has column, row and tube fibers,

which are respectively denoted by X:i2i3 ,Xi1:i3 , and Xi1i2:

(see Figure 3(a)(b)(c)). A third-order tensor also has hori-

zontal, lateral, and frontal slices, denoted by Xi1::,X:i2: and

X::i3 , respectively (see Figure 3(d)(e)(f)).

Tensor operations: Here we introduce some tensor opera-

tions following [49]. The norm of a tensor X ∈ R
n1×n2×...×nd

is defined as the square root of the sum of the squares of all

elements, i.e.,

(1) ‖X‖ =

√√√√ n1∑
i1=1

n2∑
i2=1

· · ·
nd∑

id=1

x2
i1i2...id

.

For two same-sized tensors X ,Y ∈ R
n1×...×nd , their inner

product is the sum of products of their corresponding entries,
i.e.,

(2) 〈X ,Y〉 =
n1∑

i1=1

n2∑
i2=1

· · ·
nd∑

id=1

xi1i2...idyi1i2...id .

It immediately follows that 〈X ,X〉 = ‖X‖2. The tensor
Hadamard product of two tensors X ∈ R

n1×...×nd and
Y ∈ R

n1×...×nd is denoted by X ∗H Y ∈ R
n1×...×nd ; each

entry of X ∗H Y is the product of the corresponding entries
in tensors X and Y :

(3) (X ∗H Y)i1...id = xi1...id · yi1...id .

The tensor contraction product, also known as the Ein-
stein product, of two tensors X ∈ R

n1×...×nd×p1×...×pk

and Y ∈ R
p1×...×pk×m1×...×mq is denoted by X ∗ Y ∈

R
n1×...×nd×m1×...×mq and defined as

(X ∗ Y)i1,...,id,j1,...,jq

=

p1∑
c1=1

· · ·
pk∑

ck=1

xi1,...,id,c1,...,ckyc1,...,ck,j1,...,jq ,
(4)

where ig = 1, 2, ..., ng for g = 1, 2, ..., d, and js = 1, 2, ...,ms

for s = 1, 2, ..., q. Moreover, a dth-order tensor X ∈
R

n1×n2×...×nd is rank one if it can be written as the outer
product of d vectors, i.e,

X = p1 ◦ p2 ◦ · · · ◦ pd,
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Figure 3. Example of fibers and slices of third-order tensor. This figure is reproduced based on Figure 2.1 and 2.2 in [49].

Figure 4. Rank-r CP decomposition for a third-order tensor: X ≈
∑r

j=1 wjp
1
j ◦ p2

j ◦ p3
j .

where pk = (pk1 , p
k
2 , ..., p

k
nk
) ∈ R

nk (k = 1, 2, ..., d) is a vec-
tor, and the symbol “◦” represents the vector outer product.
It means that each element of the tensor X is the product
of corresponding vector elements: xi1i2...id = p1i1p

2
i2
...pdid for

ik = 1, 2, ..., nk and k = 1, 2, ..., d. A tensor X is rank r if
r is the smallest number such that X is the sum of r outer
products of vectors: X =

∑r
j=1 p

1
j ◦ p2

j ◦ · · · ◦ pd
j .

Tensor matricization, also known as tensor unfolding or

flattening, is an operation that transforms a tensor into a
matrix. Given a tensor X ∈ R

n1×n2×...×nd , the kth-mode
matricization arranges the mode-k fibers to be columns
of the resulting matrix, which is denoted by X(k) (k =
1, 2, ..., d). The element (i1, i2, ..., id) of tensor X corresponds

to the entry (ik, j) of X(k), where j = 1+
∑d

t=1,t�=k(it−1)Jt

with Jt =
∏t−1

m=1,m �=k nm. In addition, a tensor can be trans-
formed into a vector through tensor vectorization. For a ten-
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sor X ∈ R
n1×...×nd , the vectorization of X is denoted by

vec(X ) ∈ R
∏d

i=1 ni . The element (i1, i2, ..., id) of tensor X
corresponds to the element 1 +

∑d
t=1(it − 1)Mt of vec(X ),

where Mt =
∏t−1

m=1 nm.
The k-mode tensor matrix product of a tensor X ∈

R
n1×n2×···×nd with a matrix A ∈ R

m×nk is denoted by
X ×k A, which is of size n1 × · · · × nk−1 × m × nk+1 ×
· · ·×nd. Elementwise, we have (X×kA)i1,...,ik−1,j,ik+1,...,id =∑nk

ik=1 Xi1,...,idAjik . The k-mode vector product of a tensor

X ∈ R
n1×n2×···×nd with a vector a ∈ R

nk is denoted by
X×̄ka, which is of size n1 × · · · × nk−1 × nk+1 × · · · × nd.
Elementwise, (X×̄ka)i1...ik−1ik+1...id =

∑nk

ik=1 xi1i2...idaik .

2.2 Tensor decompositions

Tensor decompositions refer to methods that express a
tensor by a combination of simple arrays. Here we introduce
two widely-used tensor decompositions and discuss their ap-
plications.

CP decomposition: The CANDECOMP/PARAFAC de-
composition (CP decomposition) [45] factorizes a tensor into
a sum of rank-1 tensors. For a dth-mode tensor X , the rank-r
CP decomposition is written as

(5) X ≈
r∑

j=1

wjp
1
j ◦ p2

j ◦ · · · ◦ pd
j ,

where wj ∈ R,pk
j ∈ S

nk−1, j = 1, ..., r, k =

1, 2, ..., d, Snk−1 = {a ∈ R
nk |‖a‖ = 1}, and ◦ is the

outer product. See Figure 4 for a graphical illustration of
CP decomposition. Sometimes the CP-decomposition is de-
noted by an abbreviation: X ≈ [[W ;P 1,P 2, ...,P d]], where
W = diag(w1, ..., wr) ∈ R

r×r is a diagonal matrix, and
P k = [pk

1 ,p
k
2 ...,p

k
r ] ∈ R

nk×r are factor matrices. If tensor X
admits a CP structure, then the number of free parameters
changes from

∏d
i=1 ni to r × (

∑d
i=1 ni − d+ 1).

If Equation (5) attains equality, the decomposition is
called an exact CP decomposition. Even for an exact CP de-
composition, there is no straightforward algorithm to deter-
mine the rank r of a specific tensor, and in fact the problem
is NP-hard [32]. In practice, most procedures numerically
infer the rank by fitting CP models with different ranks and
choosing the one with the best numerical performance.

Tucker decomposition: The Tucker decomposition factor-
izes a tensor into a core tensor multiplied by a matrix along
each mode. Given a dth-order tensor X ∈ R

n1×n2×...×nd ,
the Tucker decomposition is defined as

X ≈ C ×1 Q
1 ×2 Q

2 ×3 · · · ×d Q
d

=

m1∑
j1=1

m2∑
j2=1

· · ·
md∑
jd=1

cj1j2...jdq
1
j1 ◦ q

2
j2 ◦ · · · ◦ q

d
jd
,

(6)

where C ∈ R
m1×m2×...×md is the core tensor, Qk ∈

R
nk×mk(k = 1, 2, ..., d) are factor matrices, cj1j2...jd ∈

Figure 5. Tucker decomposition of the third-order tensor
X ∈ R

n1×n2×n3 , where C ∈ R
m1×m2×m3 is the core tensor,

and Qk ∈ R
nk×mk(k = 1, 2, 3) are factor matrices.

R, qk
jk

∈ S
nk−1(jk = 1, 2, ...,mk, k = 1, 2, ..., d). See Fig-

ure 5 for a graphical illustration of Tucker decomposi-
tion. The Tucker decomposition can be denoted as X ≈
[[C;Q1,Q2, ...,Qd]]. If X admits a Tucker structure, the

number of free parameters in X changes from
∏d

i=1 ni to∑d
i=1(ni − 1)×mi +

∏d
i=1 mi.

The k-rank of X ∈ R
n1×...×nd , denoted by rankk(X ),

is defined as the column rank of kth-mode matriciza-
tion matrix X(k). Let Rk =rankk(X ), then X is a rank-
(R1, R2, ..., Rd) tensor. Trivially, Rk ≤ nk for k = 1, 2, ..., d.
When the equality in Equation (6) is attained, the decompo-
sition is called an exact Tucker decomposition. For a given
tensor X , there always exists an exact Tucker decomposi-
tion with core tensor C ∈ R

m1×m2×···×md where mk is the
true k-rank for k = 1, 2, ..., d. Nevertheless, for one or more
k, if mk < Rk, then the Tucker decomposition is not neces-
sarily exact; and if mk > Rk, the model will contain redun-
dant parameters. Therefore, we usually want to identify the
true tensor rank, i.e., mk = Rk. While this job is easy for
noiseless complete tensors, for tensors obtained in real-world
applications, which are usually noisy or partially observed,
the rank still needs to be determined by certain searching
procedures.

2.3 Challenges in tensor analysis

In tensor analysis, the ultrahigh dimensionality of the
tensor-valued coefficients and tensor data creates challenges
such as heavy computational burden and vulnerability to
model overfitting. Conventional approaches usually trans-
form the tensors into vectors or matrices and utilize dimen-
sion reduction and low-dimensional techniques. However,
these methods are usually incapable of accounting for the
dependence structure in tensor entries. In the past decades,
an increasing number of studies have imposed decomposition
structures on the tensor-valued coefficients or data; thus nat-
urally reducing the number of free parameters, and avoiding
the issues brought by high dimensionality.

In this paper, we focus on tensor regression and tensor
completion problems, where various decomposition struc-
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tures including CP and Tucker have been widely used.
Specifically, a large proportion of tensor completion meth-
ods are realized through inferring the decomposition struc-
ture based on the partially observed tensor, and then im-
pute the missing values through the inferred decomposition
structure. Also, tensor regression problems usually include
tensor-valued coefficients, and decomposition structures are
imposed on the coefficient tensor to achieve parsimony in
parameters. In both situations, the decomposition is not
performed on a completely observed tensor, thus the rank of
the decomposition cannot be directly inferred from the data.
Most optimization-based approaches determine the rank by
various selection criteria, which may suffer from low stability
issues. Bayesian approaches perform automatic rank infer-
ence through the introduction of sparsity-inducing priors.
However, efficient posterior computing and study of theo-
retical properties of the posterior distributions are largely
needed.

Low rankness and sparsity are commonly used assump-
tions in the literature to help reduce the number of free pa-
rameters. For non-Bayesian methods, oftentimes the task is
formulated into an optimization problem, and the assump-
tions are enforced by sparsity-inducing penalty functions. In
comparison, the Bayesian methods perform decompositions
in the probabilistic setting, and enforce sparsity assump-
tions through sparsity priors. We will discuss more details
about these approaches and how they resolve challenges in
the following sections.

3. TENSOR COMPLETION

Tensor completion methods aim at imputing missing or
unobserved entries from a partially observed tensor. It is a
fundamental problem in tensor research and has wide appli-
cations in numerous domains. For instance, tensor comple-

tion techniques are extensively utilized in context-aware rec-
ommender systems (CARS) to provide personalized services
and recommendations [43, 7, 92]. In ordinary recommender
systems, the user-item interaction data are collected and
formulated into a sparse interaction matrix, and the goal is
to complete the matrix and thus recommend individualized
items to the users. In CARS, the user-item interaction is
collected with their contextual information (e.g., time and
network), and the data are formulated as a high-order ten-
sor where the modes respectively represent users, items, and
contexts [2]. Therefore, the matrix completion problem in
ordinary recommender systems is transformed into a ten-
sor completion problem in CARS, and the purpose is to
make personalized recommendations to users based on the
collected user-item interaction and contextual information.

Apart from CARS, tensor completion is also applied
in other research domains including healthcare, computer
vision and chemometrics [86]. For example, medical im-
ages collected from MRI and CT play important roles in
the clinical diagnosis process. Due to the high acquisi-
tion speed, oftentimes these high-order images are incom-
plete, thus necessitating the application of tensor comple-
tion algorithms [23, 5]. In the field of computer vision,
color videos can be represented by a fourth-order tensor
(length×width×channel×frame) by stacking the frames in
time order (see Figure 6). Tensor completion can be adopted
to impute the missing pixels and restore the lossy videos [59,
68]. As another example, chemometrics is a discipline that
employs mathematical, statistical and other methods to im-
prove chemical analysis. Tensor completion methods have
been successfully applied on various benchmark chemomet-
ric datasets including semi-realistic amino acid fluorescence
datasets [12] and flow injection datasets [69].

Tensor completion can be viewed as a generalization of
matrix completion. Since the matrix completion problems

Figure 6. An illustration of color videos. Each frame of the video is formulated as a third-order tensor, where the modes are
length, width and channels (RGB channels in this case). The frames are then stacked into a fourth-order tensor according to

time order.
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have been well-studied in the past few decades, a natural
way to conduct tensor completion is to unfold or slice the
tensor into a matrix (or matrices) and apply matrix comple-
tion methods to the transformed matrix (or matrices). Nev-
ertheless, the performance and efficiency of such approaches
are largely reduced by the loss of structural information dur-
ing the matricization process and excessive computational
cost due to the high dimensionality of the original tensor.

Under such circumstances, various methods that specif-
ically focus on high-order tensor completion have been de-
veloped. Among these techniques, a classical group of ap-
proaches perform tensor completion through tensor decom-
position. Generally speaking, these methods impose a de-
composition structure on a tensor, and estimate the decom-
position parameters based on the observed entries of the
tensor. After that, the estimated decomposition structure
is utilized to infer the missing entries of the tensor. Trace-
norm based methods are another popular class of tensor
completion methods. These methods first formulate tensor
completion as a rank minimization problem, and then em-
ploy the tensor trace norm to further transform the task
into a convex optimization problem. Finally, various opti-
mization techniques are applied to solve the problem and
thus complete the tensor. In this section we provide a brief
review of decomposition based and trace norm based ten-
sor completion methods. More details on these two methods
and other variants of tensor completion approaches can be
found in Song et al. [86].

3.1 Decomposition based methods

CP decomposition (5) and Tucker decomposition (6) are
two of the most commonly used decomposition-based meth-
ods for tensor completion. In [95], the authors propose to
perform CP decomposition on partially observed tensors by
iteratively imputing the missing values and estimating the
latent vectors in the CP structure. Specifically, in iteration
s (s ≥ 1), the partially observed tensor X is completed by:

X̃ (s) = X ∗H M+ Y(s) ∗H (1−M),

where ∗H is the tensor Hadamard product defined in (3),
X̃ (s),X ,Y(s),M ∈ R

n1×...×nd are tensors of same size, X̃ (s)

is the completed tensor, Y(s) is the interim low-rank approx-
imation based on CP decomposition, and M is the observa-
tion index tensor defined as

Mi1...id =

{
1 if Xi1...id is observed,

0 if Xi1...id is unobserved.

After the tensor is completed, the decomposition param-
eters are estimated by alternating least square optimization
(ALS). The loop of tensor completion and parameter esti-
mation is repeated until convergence.

Similar approaches were adopted by Kiers et al. [46] and
Kroonenberg [51] to impute missing entries. These methods

are referred to as EM-like methods, because they can be
viewed as a special expectation maximization (EM) method
when the residuals independently follow a Gaussian distri-
bution. While the EM-like methods are usually easy to im-
plement, they may not perform well (e.g., slow convergence
and converging to a local maximum) when there is a high
proportion of missing values.

Also based on the CP decomposition, Bro et al. [13] pro-
pose another type of tensor completion method called the
Missing-Skipping (MS) method. It conducts the CP decom-
position based only on the observed entries in the tensor, and
is typically more robust than the EM-like approaches when
applied to tensors with a high proportion of missingness.
In general, the MS methods seek to optimize the following
objective function

(7) L =
∑

(i1,i2,...,id)∈Ω

D(Xi1,...id ,Yi1,...,id),

where X ∈ R
n1×...nd is the observed tensor, Y ∈ R

n1×...×nd

is the estimated tensor with a CP structure, Ω is a set con-
taining indices of all observed entries in tensor X , and D is
an error measure.

Under the optimization framework (7), Tomasi and
Bro [95] define the error measure D to be the squared
difference between the observed and estimated entry
D(Xi1,...id ,Yi1,...,id) = (Xi1,...id − Yi1,...,id)

2, and employ a
modified Gauss-Newton iterative algorithm (i.e., Levenberg-
Marquardt method) [53, 66] to solve the optimization prob-
lem. Acar et al. [1] utilize a weighted error and minimize the
objective function based on the first-order gradient, which
is shown to be more scalable to larger problem sizes than
the second-order optimization method in [95]. Moreover, the
optimization problem can be analyzed in a Bayesian set-
ting by treating the error measure D to be the negative
log-likelihood function. We will discuss more details about
these probabilistic methods in Section 5.

Tucker decomposition is another widely utilized tool to
conduct tensor completion. While the CP-based comple-
tion approaches enjoy nice properties including uniqueness
(with the exception of elementary indeterminacies of scaling
and permutation) and nice interpretability of latent vectors,
methods that employ Tucker structure are able to accom-
modate more complex interaction among latent vectors and
are more effective than CP-based methods. Therefore, in
some real-world applications where the completion accuracy
is prioritized over the uniqueness and latent vector interpre-
tation, Tucker-based approaches are potentially more suit-
able than the CP-based methods.

Similar to CP-based methods, EM-like approaches and
MS approaches are still two conventional ways for Tucker-
based tensor completion algorithms. Walczak and Mas-
sart [100] and Andersson and Bro [3] discuss the idea of
utilizing EM-like Tucker decomposition to solve tensor com-
pletion in their earlier works. This method is further com-
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bined with higher-order orthogonal iteration to impute miss-
ing data [25]. As an example of MS Tucker decomposition,
Karatzoglou et al. [43] employ a stochastic gradient descent
algorithm to optimize the loss function based only on the
observed entries. There are also researches that develop MS-
based methods under a Bayesian framework. See Section 5
for more details.

In recent years, several studies utilize hierarchical tensor
(HT) representations to provide a generalization of classi-
cal Tucker models. Most of the HT representation based
methods are implemented using projected gradient meth-
ods. For instance, Rauhut et al. [79, 80] employ a Rieman-
nian gradient iteration method to establish an iterative hard
thresholding algorithm in their model. The Riemannian op-
timization is utilized to construct the manifold for low-rank
tensors in [17, 44, 50].

3.2 Trace norm based methods

In [59] and a subsequent paper [60], the authors general-
ize matrix completion to study tensors and solve the tensor
completion problem by considering the following optimiza-
tion:

min
Y

: ‖Y‖∗,

s.t. : YΩ = XΩ,
(8)

where X ∈ R
n1×...×nd is the observed tensor, Y ∈ R

n1×...×nd

is the estimated tensor, Ω is the set containing indices of all
observed entries in tensor X , and ‖ · ‖∗ is the tensor trace
norm. The tensor trace norm is a relaxation of the tensor n-
rank (rankn(X ), see section 2.2), and is defined as a convex
combination of the trace norms of all unfolding matrices.
When the noises are included, the optimization problem is
now described by

min
Y

‖Y‖∗ :=
d∑

k=1

αk‖Y (k)‖∗

subject to YΩ = XΩ + EΩ

(9)

where the αk’s are non-negative weights satisfying∑d
k=1 αk = 1, and EΩ is the error. The optimization prob-

lem (9) is called a sum of nuclear norm (SNN) model. Note
that we do not impose any data generation assumptions
in (9). If the noise EΩ is assumed to be Gaussian, then by
considering maximizing the likelihood function under the
constraint, the SNN model becomes

(10) min
Y

λ

2
‖PΩ(Y − X )‖2 +

d∑
k=1

αk‖Y (k)‖∗,

where λ > 0 is a tuning parameter, PΩ(·) denotes all the
entries in the observed index set Ω, ‖ · ‖ is the tensor norm
defined in (1), and ‖ · ‖∗ is the matrix trace norm [86]. This

optimization problem can be solved by block coordinate de-
scent algorithms [59] and splitting methods (e.g., Alternat-
ing Direction Method of Multipliers, ADMM) [23, 96, 85].

Using a similar model as (8), Mu et al. [68] propose to ap-
ply the trace norm on a balanced unfolding matrix instead
of utilizing the summation of trace norms in (9). In the
literature, it is also common to consider alternative norms
such as the incoherent trace norm [107] and tensor nuclear
norm [47, 109]. There are other studies that impose trace
norms on the factorized matrices rather than unfolding ma-
trices [61, 106, 65]; these approaches can be viewed as a
combination of decomposition based and trace norm based
completion methods.

4. TENSOR REGRESSION

In this section, we review tensor regression methods,
where the primary goal is to analyze the association be-
tween tensor-valued objects and other variables. Based on
the role that the tensor plays in the regression, the problem
can be further categorized into tensor predictor regression
(with tensor-valued predictors and a univariate or multivari-
ate response variable) and tensor response regression (with
tensor-valued response and predictors that can be a vector,
a tensor or even multiple tensors).

4.1 Tensor predictor regression

Many tensor predictor regression methods are motivated
by the need to analyze anatomical magnetic resonance imag-
ing (MRI) data [31, 120]. Usually stored in the form of 3D
images (see Figure 7 for an example), MRI presents the
shape, volume, intensity, or developmental changes in brain
tissues and blood brain barrier. These characteristics are
closely related to the clinical outcomes including diagnostic
status, and cognition and memory score. It is hence natu-
ral to formulate a tensor predictor regression to model the
changes of these scalar or vector-valued clinical outcomes
with respect to the tensor-valued MRI images.

In medical imaging analysis, conventional approaches are
generally based on vectorized data, either by summarizing
the image data through a small number of preidentified re-
gions of interest (ROIs), or by transforming the entire image
into a long vector. The former is highly dependent on the
prior domain knowledge and does not fully utilize the in-
formation in the raw image, and the latter suffers from the
high-dimensionality of voxels in the 3D image and aban-
dons important spatial information during the vectorization
process. In order to circumvent these limitations, a class
of regression methods have been developed to preserve the
tensor structure. Specifically, given a univariate response Y
(e.g. memory test score, disease status) and a tensor-valued
predictor X ∈ R

n1×...×nd (e.g. 3D image), Guo et al. [31]
propose a linear regression model

(11) Y = 〈W ,X〉+ b,
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Figure 7. An example of 3D magnetic resonance imaging
(MRI). The image is adapted with permissions from Science
Photo Library. url: https://www.sciencephoto.com/media/

306963/ view .

where 〈·, ·〉 is the tensor inner product defined in (2), W is
the coefficient tensor, and b is the error. While model (11)
is a direct extension of a classical linear regression model,
the extension can result in the explosion of the number of
unknown parameters. Specifically, the coefficient tensor W
includes

∏d
i=1 ni free parameters, which far exceeds the typ-

ical sample size. To address this issue, Guo et al. [31] impose
a rank-r CP structure (5) on W , which reduces the number

of parameters in W to r
∑d

i=1 ni.

Li et al. [56] extend model (11) to the multivariate re-
sponse Y = (Y1, Y2, ..., Yq)

� case, where each marginal re-
sponse Yk (1 ≤ k ≤ q) is assumed to be the summation of
〈X ,Bk〉 and an error term, where X is the predictor ten-
sor, and Bk ∈ R

n1×...×nd is the coefficient tensor. Under
the assumption that the coefficients share common features,
the coefficient tensors are further formulated into a stack
B = [B1, ...,Bq] ∈ R

n1×...×nd×q, on which a CP structure is
imposed for parameter number reduction.

Additionally, Zhou et al. [120] integrate model (11) with
the generalized linear regression framework, and incorporate
the association between response and other adjusting covari-
ates into the model. Consider a scalar response Y , a tensor-
valued predictor X ∈ R

n1×...×nd and vectorized covariates
z ∈ R

n0 (e.g., demographic features), the generalized linear
model is given by

(12) g{E(Y )} = b+ γ�z + 〈W ,X〉,

where γ is the vector coefficient for z, g(·) is a link function,
and W is the coefficient tensor where a CP structure is as-
sumed. In model (12), Li et al. [57] impose a Tucker decom-
position on W , and demonstrate that the Tucker structure
allows for more flexibility.

In order to accommodate longitudinal correlation of
the data in imaging analysis, Zhang et al. [110] extend
model (12) in the generalized estimating equation setting
and establish asymptotic properties of the method. Hao et
al. [34] show that the linearity assumption in (11) may be
violated in some applications, and propose a nonparamet-
ric extension of (11) that accommodates nonlinear interac-
tions between the response and tensor predictor. Zhang et
al. [111] use importance sketching to reduce the high com-
putational cost associated with the low-rank factorization in
tensor predictor regression, and establish the optimality of
their method in terms of reducing mean squared error under
the Tucker structure assumption and randomized Gaussian
design. Beyond the regression framework, Wimalawarne et
al. [102] propose a binary classification method by consid-
ering a logistic loss function and various tensor norms for
regularization.

4.2 Tensor response regression

While the main focus of tensor predictor regression is an-
alyzing the effects of tensors on the response variables, re-
searchers are also interested in studying how tensor-valued
outcomes change with respect to covariates. For example,
an important question in MRI studies is to compare the
scans of brains between subjects with neurological disorders
(e.g., attention deficit disorder) and normal controls, after
adjusting for other covariates such as age and sex [56]. This
problem can be formulated as a tensor response regression
problem where the MRI data, usually taking the form of a
three-dimensional image, is the tensor-valued response, and
other variables are predictors. Apart from medical imaging
analysis, tensor response regression is also useful in the ad-
vertisement industry. For example, the click-through rate
(CTR) of digital advertisements is often considered to be a
significant indicator of the effectiveness of an advertisement
campaign. Thus an important business question is to under-
stand how CTR is affected by different features. Since the
CTR data can be formulated as a high-dimensional tensor
(see Figure 8), we can develop a regression model to ad-
dress this problem, where the click-through rate on target
audience is the tensor-valued response, and the features of
advertisements are predictors of interest.

Given a dth-order tensor response Y ∈ R
n1×...×nd and a

vector predictor x ∈ R
q, Rabusseau and Kadri [75] and Sun

and Li [90] propose a linear regression model

(13) Y = B×̄d+1x+ E ,

where B ∈ R
n1×n2×...×nd×q is an (d+ 1)th-order tensor co-

efficient, E is an error tensor independent of x, and ×̄d+1 is
the (d+1)-mode vector product. Without loss of generality,
the intercept is set to be zero to simplify the presentation.

Both studies [75, 90] propose to estimate the coefficients
B by solving an optimization problem, which consists of a
squared tensor norm of the difference between observed and
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Figure 8. An illustration of click through rate data, which is
formulated as a three-mode tensor, where each voxel
represents the click-through rate of user i reacting to

advertisements from publisher j at time k.

estimated response ‖Y−B×̄d+1x‖2 and a sparsity structure.
In Rabusseau and Kadri [75], the sparsity is achieved by a
L2-penalty on parameters. In Sun and Li [90], the sparsity
structure is realized through a hard-thresholding constraint
on the coefficients. For both studies, decomposition struc-
tures are imposed on the tensor coefficient B to facilitate
parsimonious estimation of high-dimensional parameters.

Lock [63] further extends (13) to a tensor-on-tensor re-
gression model, allowing a predictor of arbitrary order.
Given N independent samples, the responses can be stacked
into a tensor Y ∈ R

N×m1×m2×...×mq , and the predictors are
denoted by X ∈ R

N×n1×n2×...×nd . Lock [63] proposes the
following model:

(14) Y = X ∗ B + E ,

where ∗ is the tensor contraction product defined in (4),
B ∈ R

n1×...×nd×m1×...×mq is the coefficient tensor and E de-
notes the error. A CP structure is imposed on B to achieve
parsimony in parameters. The estimation of B is also trans-
formed into an optimization problem, and a L2-penalty is
included in the loss function to prevent over-fitting. Under a
similar modeling framework, Gahrooei et al. [22] develop a
multiple tensor-on-tensor regression model, where the pre-
dictors are a set of tensors with various orders and sizes.

Based on (14), Li and Zhang [54] propose a tensor re-
sponse regression that utilizes the envelope method to re-
move redundant information from the response. Raskutti et
al. [78] analyze the tensor regression problem with convex
and weakly decomposable regularizers. In their regression
model, both the predictors and the responses can be tensors,
and the low-rankness assumption is realized by a nuclear
norm penalty. Zhou et al. [121] focus on tensor regression
where the response is a partially observed dynamic tensor,
and impose low-rankness, sparsity and temporal smooth-
ness constraints in the optimization. Chen et al. [15] extend

model (14) to the generalized tensor regression setting and
utilize a projected gradient descent algorithm to solve the
non-convex optimization.

5. BAYESIAN METHODS IN TENSOR
COMPLETION

In Section 3.1, we mention that the tensor completion
tasks can be realized by performing decomposition on par-
tially observed tensors and using the inferred decomposi-
tion structure to impute the missing data (e.g., the Missing-
Skipping methods). Bayesian tensor decomposition meth-
ods can be naturally applied to study partially observed
tensors. Generally, a large proportion of Bayesian decompo-
sition methods are based on CP (5) or Tucker decomposi-
tion (6). A class of nonparametric methods have also been
proposed to model complex non-linear interactions among
latent factors. Recently, more decomposition structures are
analyzed under the Bayesian framework (e.g., tensor ring de-
composition [64], tensor train decomposition [39] and neural
decomposition [36]). A summary of the methods discussed
in this section is given in Table 1.

5.1 Bayesian CP-based decomposition

Under the Bayesian framework, Xiong et al. [103] utilize
a CP decomposition based method to model time-evolving
relational data in recommender systems. In their study, the
observed data are formed into a three-dimensional tensor
R ∈ R

N×M×K , where each entry Rk
ij denotes user i’s rate

on item j given time k. A CP structure (5) is then imposed
on R:

(15) R ≈
D∑

d=1

Ud: ◦ V d: ◦ T d: = [[U ,V ,T ]],

where U ,V ,T are latent factors corresponding to user,
item, and time, respectively; and Ud:,V d:,T d: represent the
dth-row of U ,V and T . Xiong et al. [103] assume a Gaus-
sian distribution for the continuous entries Rk

ij conditional
on U ,V ,T as follows,

(16) Rk
ij |U ,V ,T ∼ N (〈U :i,V :j ,T :k〉, α−1),

where α is the precision, and 〈U :i,V :j ,T :k〉 is the inner
product of three D-dimensional vectors defined as

〈U :i,V :j ,T :k〉 =
D∑

d=1

UdiVdjTdk.

A complete Bayesian setting requires full specification of the
parameter priors. In the study, multivariate Gaussian priors
are put on the latent vectors corresponding to users and
items

U i ∼ N (μU ,Λ
−1
U ), i = 1, 2, ..., N,(17)
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Table 1. Summary of Bayesian tensor decomposition methods.

Name
Decomposition

Rank Specification
Posterior

Data Type
Structure Inference

BPTF [103] Pre-specify Gibbs Continuous
PLTF [84] Pre-specify Gibbs Binary
BGCP [14] Pre-specify Gibbs Continuous
PTF [82] Pre-specify VB Count

NeuralCP [62] Pre-specify AEVB Continuous
MGP-CP [76] Automatically inferred Gibbs Continuous/Binary
PGCP [77] CP Automatically inferred Gibbs/EM Binary/Count
BNBCP [41] Decomposition Automatically inferred Gibbs/VB Count
ZTP-CP [40] Automatically inferred Gibbs Binary
FBCP [112] Automatically inferred VB Continuous
BRTF [115] Automatically inferred VB Continuous
POST [18] Pre-specify SVB Continuous/Binary
BRST [108] Automatically inferred SVB Continuous
SBDT [20] Pre-specify ADF&EP Continuous/Binary

pTucker [16] Pre-specify MAP/EM Continuous
Hayashi et al. [35]

Tucker
Pre-specify EM All

BPTD [83]
Decomposition

Pre-specify Gibbs Count
BTD [113] Automatically inferred VB Continuous

BASS-Tucker [19] Pre-specify ADF&EP Continuous

InfTucker [104]

Nonparametric Pre-Specify

VEM

Binary/Continuous

Zhe et al. [117] VEM
DinTucker [118] VEM
Zhe et al. [119] VI
SNBTD [73] ADF&EP
POND [94] VB

Zhe and Du [116] VEM
Wang et al. [101] VI

BCTT [21] EP

TR-VBI [64] Tensor Ring Automatically inferred VB Continuous
KFT [39] Tensor Train N/A VI Continuous

He et al. [36] Neural N/A AEVB All

ADF: Assume-density filtering [11]. AEVB: Auto-Encoding Variational Bayes [48]. EM: Expectation maximization. EP: Expec-
tation propagation [67]. Gibbs: Markov chain Monte Carlo (MCMC) with Gibbs sampling. MAP: Maximum a posteriori. SVB:
Steaming variational Bayes. VB: Variational Bayes. VEM: Variational expectation maximization. VI: Variational Inference. N/A:
Not applicable. Neural: Neural tensor decomposition.

V j ∼ N (μV ,Λ
−1
V ), j = 1, 2, ...,M,(18)

and each time feature vector is assumed to depend only on

its immediate predecessor due to temporal smoothness:

T k ∼ N (T k−1,Λ
−1
T ), k = 1, 2, ...,K,(19)

T 0 ∼ N (μT ,Λ
−1
T ).(20)

Moreover, Xiong et al. [103] consider a hierarchical

Bayesian structure where the hyper-parameters ΘU ≡
{μU ,ΛU},ΘV ≡ {μV ,ΛV }, and ΘT ≡ {μT ,ΛT } are

viewed as random variables, and their prior distributions

(i.e., hyper-priors), denoted by p(·), are

p(ΘU ) =

p(μU |ΛU )p(ΛU ) = N (μ0, (β0ΛU )
−1)W(ΛU |W 0, ν0),

p(ΘV ) =

p(μV |ΛV )p(ΛV ) = N (μ0, (β0ΛV )
−1)W(ΛV |W 0, ν0),

p(ΘT ) =

p(μT |ΛT )p(ΛT ) = N (μ0, (β0ΛT )
−1)W(ΛT |W 0, ν0).

(21)

Here W(Λ|W 0, ν0) is the Wishart distribution of a D ×D
random matrix Λ with ν0 degrees of freedom and a D ×D
scale matrix W 0:

W(Λ|W 0, ν0) ∝ |Λ|(ν0−D−1)/2 exp

(
−Tr(W−1

0 Λ)

2

)
.
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Also, a Wishart prior is put on the precision α

(22) p(α) = W(α|W̃0, ν̃0).

The priors in (21) and (22) are conjugate priors for the Gaus-
sian parameters to help simplify the posterior computation.
The parameters μ0, β0,W 0, ν0, W̃0 and ν̃0 can be chosen by
prior knowledge or tuned by model training.

The Bayesian model in (16)–(21) is called a Bayesian
Probabilistic Tensor Factorization (BPTF). The posterior
distribution of the BPTF model is obtained by Markov
Chain Monte Carlo (MCMC) with Gibbs sampling [24].
While Xiong et al. [103] use the BPTF model to perform
tensor decomposition on continuous rating data in recom-
mender systems, similar priors have been adapted in other
applications and data types. For example, Chen et al. [14]
formulate the spatio-temporal traffic data as a third-order
tensor (road segment×day×time of day), where a CP struc-
ture is assumed and a Gaussian-Wishart prior is put on the
latent factors for conjugacy. A similar model has been used
to study multi-relational network [84], where the interaction
data form a partially symmetric third-order tensor and the
tensor entries are binary indicators of whether a certain type
of relationship exists. Correspondingly, a sigmoid function is
employed in (16) to map the outer product of latent factors
onto the range [0, 1].

In addition, Schein et al. [82] develop a Poisson tensor
factorization (PTF) method to deal with dyadic interaction
data in social networks. Specifically, the interaction data are
formulated as a fourth-order tensor X , where Xijat denotes
the number of interactions within a discrete time interval t
involving a particular sender i, receiver j, and action-type
a. A Poisson distribution is employed to connect the CP
structure to the count-valued data:

(23) Xijat ∼ Poisson(

K∑
k=1

θsikθ
r
jkψakδtk).

Here θsik, θ
r
jk, ψak and δtk represent the latent factors corre-

sponding to the sender, receiver, action-type and time in-
terval, respectively. Gamma priors are then assigned to the
latent factors,

θsik ∼ Gamma(a, b),

θrjk ∼ Gamma(a, b),

ψak ∼ Gamma(c, d),

δtk ∼ Gamma(e, f).

(24)

Schein et al. [82] then represent the Poisson likelihood (23)
as a sum of K independent Poisson random variables, and
derive a Variational Bayesian (VB) algorithm to make in-
ference on the posterior distribution.

All the aforementioned methods assume that the interac-
tions among the latent factors are multi-linear, which may
not necessarily hold in practice. To address this issue, Liu

et al. [62] consider a neural CP decomposition that exploits
both neural networks and probabilistic methods to capture
potential nonlinear interactions among the tensor entries.
Given a tensor X and the latent matrices in its CP structure
U1, ...,UD, the distribution of X conditional on U1, ...,UD

is given by

p(X|{Ud}Dd=1) =
∏

i1,...,iD

N (xi1...iD |μ(ui1...iD), σ
2(ui1...iD )),

where ui1...iD = (U1
i1:
, ..., UD

iD:) ∈ R
DR is a long vector gen-

erated by concatenating the elements in the idth row of the
factor matrix Ud. In order to accommodate nonlinear in-
teractions between latent factors, μ and σ2 are defined as
functions of ui1...iD (μ = μ(ui1...iD), σ

2 = σ2(ui1...iD )). In
particular, the two functions μ(·) and σ2(·) are modeled by
two neural networks with the same input ui1...iD ,

μ = w�
μh(ui1...iD ) + bμ,

log σ2 = w�
σ h(ui1...iD ) + bσ,

where h(ui1...iD ) is a nonlinear hidden layer shared by these
two neural networks, and is defined as a tanh activation
function in [62]:

h(ui1...iD ) = tanh(W�ui1...iD + b).

As discussed in Section 2.2, determining the rank of CP
can be challenging in practice. Even for a noise-free tensor,
its rank specification is an NP-hard problem [32]. In order to
determine the CP rank, a common practice is to fit models
with different ranks and choose the best rank based on cer-
tain criteria. Nevertheless, this approach may suffer from a
low stability issue and a high computational cost. An alter-
native approach is to use sparsity-inducing priors. For exam-
ple, in [76] and a subsequent work [77], the authors propose
a Bayesian low-rank CP decomposition method, which uti-
lizes the multiplicative gamma process (MGP) prior [6] to
automatically infer the rank. Specifically, given a CP struc-
ture

X =
R∑

r=1

λr · u(1)
r ◦ u(2)

r ◦ · · · ◦ u(K)
r ,

the following priors are put on the vector λ =
(λ1, λ2, ..., λR):

λr ∼ N (0, τ−1
r ), 1 ≤ r ≤ R(25)

τr =

r∏
l=1

δl, δl ∼ Gamma(ac, 1), ac > 1.(26)

In MGP prior, as r increases, the precision τr takes large val-
ues hence shrinks λr towards zero. Small λr values indicate
that the term λr ·u(1)

r ◦u(2)
r ◦· · ·◦u(K)

r does not have a signif-
icant impact on the CP structure, hence could be removed

Bayesian methods in tensor analysis 259



from the model. Two generalizations of MGP prior are fur-
ther developed, including truncation based variant MGP-
CPt and the adaptive variant MGP-CPa, to automatically
infer the rank R [76, 77].

Hu et al. [41] develop a Bayesian non-negative tensor fac-
torization that deals with count-valued data and automat-
ically infers the rank of CP decomposition. In their work,
the Poisson distribution is utilized to establish a connection
between the CP structure and the count-valued data. Given
a tensor Y ∈ R

n1×...×nK and its entries i = {i1, ..., iK}, we
have

Yi ∼ Poisson

(
R∑

r=1

λr

K∏
k=1

u
(k)
ikr

)
.

The non-negativity constraints on the factor matrices

U (1), ...,U (K) (U (k) = [u
(k)
1 , ...,u

(k)
R ], k = 1, 2, ...,K) are

naturally satisfied by imposing Dirichlet priors on the fac-

tors u
(k)
r = [u

(k)
1r , ..., u

(k)
ikr

]�:

u(k)
r ∼ Dir(a(k), ..., a(k)),

and a gamma-beta hierarchical prior is put on λr to promote
the automatic rank specification:

λr ∼ Gamma(gr,
pr

1− pr
),(27)

pr ∼ Beta(cε, c(1− ε)) for some c > 0.(28)

Similar to the MGP prior in (25) and (26), the gamma-
beta hierarchical prior in (27) and (28) also shrinks λr to
zero as r increases, and is thus able to select the CP rank.
This model is also extended to binary data by adding an
additional layer bi = 1(yi ≥ 1), which takes a count-valued
entry yi in Y and thresholds this latent count at one to
generate binary-valued entries bi [40].

Instead of imposing sparsity priors on the core elements of
CP structure, Zhao et al. [112] place a hierarchical prior over
the latent factors. Let X ∈ R

I1×···×IN have a CP structure

X = [[A(1), ...,A(N)]],

where A(n) = [a
(n)
1 , ...,a

(n)
In

] (n = 1, 2, ..., N) are latent fac-
tors. Let λ = [λ1, ..., λR] and Λ = diag(λ). The prior distri-

bution of A(n) is

p(A(n)|λ) =
In∏

in=1

N (a
(n)
in

|0,Λ−1), n = 1, 2, . . . , N.

A hyperprior is further defined over λ, which is factorized
over the latent dimensions

p(λ) =

R∏
r=1

Gamma(λr|cr0, dr0).

Here R is a pre-specified maximum possible rank. The latent
vectors (the rth row of all latent matrices) will shrink to a

zero vector as λ−1
r ’s approach to zero. This model can also

accommodate various types of outliers and non-Gaussian
noise through the introduction of a sparsity structure, and
the tradeoff between the low-rankness approximation and
the sparse representation can be learned automatically by
maximizing the model evidence [115].

In real-world applications including recommender sys-
tems, image/video data analysis and internet networks, the
data are sometimes produced continuously (i.e., streaming
data). Therefore it is of interest to generalize the tensor
decomposition models to analyze such data in a real time
manner, where the model parameters can be updated ef-
ficiently upon receiving new data without retrieving pre-
vious entries. To this end, a class of streaming tensor de-
composition methods have been developed, and some are
analyzed under the Bayesian CP framework [108, 18, 20]. In
general, these algorithms start with a prior distribution of
unknown parameters and then infer a posterior that best ap-
proximates the joint distribution of these parameters upon
the arrival of new streaming data. The estimated poste-
rior is then used as the prior for the next update. These
methods are implemented either by streaming variational
Bayes (SVB) [108, 18], or assume-density filtering (ADF)
and expectation-propagation (EP) [20].

5.2 Tucker-based Bayesian decomposition
methods

Compared to the CP decomposition, the Tucker struc-
ture (6) can model more complex interactions between la-
tent factors. One of the early works that employs a prob-
abilistic Tucker structure is proposed by Chu and Ghahra-
mani [16], where a probabilistic framework called pTucker is
developed to perform a decomposition on partially observed
tensors. Given a continuous third-order tensor Y ∈ R

n×m×d,
a Gaussian distribution is assigned to each entry of the ten-
sor Y ,

Yijr|T ∼ N (Fijr, σ
2).

Here F has a Tucker structure with a core tensor T

Fijr = vec(T )�(vr ⊗ zj ⊗ xi),

where ⊗ is the Kronecker product, and vr, zj and xi are
latent vectors. Next, independent standard normal distribu-
tions are specified over the entries in T as priors:

Tkls ∼ N (0, 1), ∀k, l, s.

By integrating out the core tensor T from the joint distri-
bution

∏
i,j,r p(Yijr|T )

∏
k,l,s p(Tkls), the observational ar-

ray still follows a Gaussian distribution:

vec(Y) ∼ N (0,UU� + σ2I),

where vec(Y) is the vectorized tensor, σ2 is the noise level,
and U = V ⊗Z ⊗X, where V ,Z and X are latent matri-
ces. To complete the Bayesian framework, standard normal
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distributions are further used as priors for latent compo-
nents X,Z and V . Finally, the latent factors are estimated
by maximum a posteriori (MAP) method with gradient de-
scent.

While the MAP method provides an efficient alternative
to perform point estimation for latent factors, it also has
significant disadvantages including vulnerability to overfit-
ting and incapability of quantifying parameter uncertain-
ties. To this end, various approaches seek to provide a fully
Bayesian treatment through inferring the posterior distri-
bution of parameters. For instance, Hayashi et al. [35] uti-
lize the expectation maximization (EM) method that com-
bines the Laplace approximation and the Gaussian process
to perform posterior inference on latent factors. They use
the exponential family distributions to connect the Tucker
structure with the observed tensor, thus developing a de-
composition method that is compatible with various data
types. In addition, Schein et al. [83] propose a Bayesian
Poisson Tucker decomposition (BPTD) that uses MCMC
with Gibbs sampling for posterior inference. That method
mainly focus on modeling count-valued tensors by putting
Poisson priors on the Tucker structure entries and Gamma
priors on the latent factors. More recently, Fang et al. [19]
develop a Bayesian streaming sparse Tucker decomposition
(BASS-Tucker) method to deal with streaming data. BASS-
Tucker assigns a spike-and-slab prior over entries of core
tensor and employs an extended assumed density filtering
(ADF) framework for posterior inference.

Similar to CP-based methods, an important task for
Tucker decomposition based methods is to choose an ap-
propriate tensor rank. Unfortunately, this problem is chal-
lenging especially when dealing with partially observed data
corrupted with noise. Zhao et al. [113] employ hierarchical
sparsity-inducing priors to perform automatic rank determi-
nation in their Bayesian tensor decomposition (BTD) model.
Specifically, the observed tensor Y ∈ R

I1×...×IN is assumed
to follow a Gaussian distribution with the mean following a
Tucker structure:

vec(Y)|{U (n)},G, τ ∼ N ((
⊗
n

U (n)))vec(G), τ−1I),

where {U (n)} are latent matrices, G is the core tensor, and
τ is the precision. To allow a fully Bayesian treatment, hier-
archical priors are placed over all model parameters. First,
a noninformative Gamma prior is assigned to the precision
parameter τ

τ ∼ Gamma(aτ0 , b
τ
0).

Next, a group sparsity prior is employed over the factor ma-

trices, i.e., each U (n) = [u
(n)
1 , ...,u

(n)
In

]� (u
(n)
in

are latent vec-

tors) is governed by hyper-parameters λ(n) = (λ
(n)
1 , ..., λ

(n)
Rn

),

where λ
(n)
rn controls the precision related to group rn (i.e.,

rnth column of U (n)). Let Λ(n) =diag(λ(n)), then the group

sparsity prior is given by

u
(n)
in

|λ(n) ∼ N (0,Λ(n)−1

), ∀n, ∀in.

The sparsity assumption is also imposed on the core ten-
sor G. Considering the connection between latent factors
and the corresponding entries of the core tensor, the preci-
sion parameter for Gr1,...,rN can be viewed as the product of

precisions over {u(n)
·rn}Nn=1, which is represented by

Gr1...rN |{λ(n)}, β ∼ N (0, (β
∏
n

λ(n)
rn )−1),

or equivalently,

vec(G)|{λ(n)}, β ∼ N (0, (β
⊗
n

Λ(n))−1),

where β is a scaling parameter on which a Gamma prior is
placed

β ∼ Gamma(aβ0 , b
β
0 ).

The hyperprior for λ(n) plays a key role for differ-
ent sparsity-inducing priors. Two options (student-t and
Laplace) are commonly used to achieve group sparsity:

Student-t : λ(n)
rn ∼ Gamma(aλ0 , b

λ
0 ), ∀n, ∀rn;

Laplace : λ(n)
rn ∼ IG(1,

γ

2
), ∀n, ∀rn,

γ ∼ Gamma(aγ0 , b
γ
0).

5.3 Nonparametric Bayesian decomposition
methods

In addition to the aforementioned linear models, a class of
nonparametric Bayesian approaches have been developed to
capture the potential nonlinear relationship between tensor
entries. One of the pioneering works is InfTucker proposed
by Xu et al. [104]. Generally, InfTucker maps the latent fac-
tors onto an infinite feature space and then performs Tucker
decomposition with the core tensor of an infinite size. Let
M ∈ R

m1×...×mK be a tensor following a Tucker structure
with a core tensor W and latent factors U (1), ...,U (K). One
can assign an element-wise standard Gaussian prior over the
core tensor W (vec(W) ∼ N (vec(W);0, I)) and marginalize
out W . The marginal distribution of tensor M is then given
by
(29)

p(M|U (1), ...,U (K)) = N (vec(M);0,Σ(1) ⊗ ...⊗Σ(K))),

where Σ(K) = U (K)U (K)� . Since the goal is to capture the
nonlinear relationships, each row uk

t of the latent factors

U (k) is replaced by a nonlinear map φ(uk
t ). Then a nonlin-

ear covariance matrixΣ(k) = k(U (k),U (k)) can be obtained,
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where k(·, ·) is a nonlinear covariance kernel function. In In-
fTucker [104], k(·, ·) is chosen as the radial basis function
kernel. After feature mapping, the core tensor W has the
size of the mapped feature vector uk

t on mode k, which can
be potentially infinity. Because the covariance of vec(M) is

a function of the latent factors U = {U (1), ...,U (K)}, equa-
tion (29) actually defines a Gaussian process (GP) on tensor
entries, where the input is based on the corresponding la-
tent factors U . To encourage sparse estimation, element-wise
Laplace priors are assigned on U :

(30) u
(k)
i ∼ L(λ) ∝ exp(−λ‖u(k)

i ‖1).

Finally, the observed tensor Y is sampled from a noisy
model p(Y|M), of which the form depends on the data type
of Y . The joint distribution is then given by

p(Y ,M,U) = p(U)p(M|U)p(Y|M),

where p(U) is given by (30), and p(M|U) is given by (29)

with Σ(k) = k(U (k),U (k)).

Under a similar modeling framework, Zhe et al. [117]
make two modifications to InfTucker. One is to assign a
Dirichlet process mixture (DPM) prior [4] over the latent
factors that allows a random number of latent clusters.
The other is to utilize a local GP assumption instead of
a global GP when generating the observed array given the
latent factors, which enables fast computation over subar-
rays. Specifically, the local GP-based construction is realized
by first breaking the whole array Y into smaller subarrays
{Y1, ..,YN}. Then for each subarray Yn, a latent real-valued
subarray Mn is generated by a local GP based on the cor-
responding subset of latent factors Un = {U (1)

n , ...,U (K)
n },

and the noisy observation Yn is sampled according to Mn,

p(Yn,Mn|U)=p(Mn|Un)p(Yn|Mn)

=N (vec(Mn);0,Σ
(1)
n ⊗ ...⊗Σ(K)

n )p(Yn|Mn),

where Σ(k)
n = k(U (k)

n ,U (k)
n ) is the kth mode covariance ma-

trix over the sub-factors Un.

Likewise, DinTucker [118] consider a local GP assump-
tion and sample each of the subarrays {Y1, ...,Yn} from

a GP based on the latent factors Ũn = {Ũ (1)

n , ..., Ũ
(K)

n }.
Different from Zhe et al. [117], in DinTucker these latent
factors are then tied to a set of common latent factors
U = {U (1), ...,U (K)} via a prior distribution

p(Ũn|U) =
K∏

k=1

N (vec(Ũ
(k)

n )|vec(U (k)), λI),

where λ is the variance parameter that controls the similar-
ity between U and Ũn. Furthermore, DinTucker divides each
subarray Yn into Tn smaller subarrays Yn = {Yn1, ...,YnTn}

that share the same latent factors {Ũn}, and their joint prob-
ability is given by

p(U , {Ũn,Mn,Yn}Nn=1)

=

N∏
n=1

p(Ũn|U)
Tn∏
t=1

p(Mnt|Ũn)p(Ynt|Mnt),

where Mnt is a latent subarray, and Mn = {Mnt}Tn
t=1.

The local terms require less memory and have a faster pro-
cessing time than the global term. More importantly, the
additive nature of these local terms in the log domain en-
ables distributed inference, which is then realized through
the MapReduce system.

While Zhe et al. [117] and DinTucker [118] improve the
scalability of their GP-based approaches through modeling
the subtensors, their methods can still run into challenges
when the sparsity level is very high in observed tensors. To
address this issue, a class of methods that do not rely on the
Kronecker-product structure in the variance (29) are pro-
posed based on the idea of selecting an arbitrary subset of
tensor entries for training. Assume that the decomposition
is performed on a sparsely observed tensor Y ∈ R

d1×...×dK .
For each tensor entry i = (i1, ..., iK), Zhe et al. [119] first
construct an input xi by concatenating the correspond-

ing latent factors from all the modes: xi = [u
(1)
i1

, ...,u
(K)
iK

],

where u
(k)
ik

is the ikth row in the latent factor matrix U (k)

for mode k. Then each xi is transformed to a scalar mi

through an underlying function f : R
∑K

j=1 dj → R such that

mi = f(xi) = f([u
(1)
i1

, ...,u
(K)
iK

]). After that, a GP prior
is assigned over f to learn the unknown function: for any
set of tensor entries S = {i1, ..., iN}, the function values
fS = {f(xi1), ..., f(xiN )} are distributed according to a
multivariate Gaussian distribution with mean 0 and the co-
variance determined by XS = {xi1 , ...,xiN }:

(31) p(fS |U) = N (fS |0, k(XS ,XS)),

where U is the latent factor, and k(·, ·) is a nonlinear co-
variance kernel. Note that this method is equivalent to In-
fTucker [104] if all entries are selected and a Kronecker-
product structure is applied in the full covariance. A stan-
dard normal prior is assigned over the latent factors, and the
observed entries y = [yi1 , ..., yiN ] are sampled from a model
p(y|m), where p(·) is selected based on the data type.

Following the sparse GP framework (31), Pan et al. [73]
propose the Streaming Nonlinear Bayesian Tensor Decom-
position (SNBTD) that performs fast posterior updates
upon receiving new tensor entries. Their model is augmented
with feature weights to incorporate a linear structure, and
the assumed-density-filtering (ADF) framework is extended
to perform reliable streaming inference. Also based on (31),
Tillinghast et al. [94] utilize convolutional neural networks
to construct a deep kernel k(·, ·) for GP modeling, which
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is more powerful in estimating arbitrarily complicated rela-
tionships in data compared to the methods based on shallow
kernel functions (e.g., RBF kernel).

In some applications, the tensor data are observed with
additional temporal information. Various approaches have
been proposed to preserve the accurate timestamps and take
full advantage of the temporal information. Among these
methods, Zhe and Du [116] and Wang et al. [101] perform
decomposition based on event-tensors to capture complete
temporal information, and Fang et al. [21] model the core
tensor as a time-varying function, where GP prior is placed
to estimate different types of temporal dynamics.

6. BAYESIAN METHODS IN TENSOR
REGRESSION

Similar to the frequentist tensor regression methods dis-
cussed in Section 4, Bayesian tensor regression methods can
be categorized into Bayesian tensor predictor regression and
Bayesian tensor response regression. We discuss these two
classes of methods in Section 6.1 and 6.2, and their theo-
retical properties in Section 6.3. We also review posterior
computing in Section 6.4. A summary of the methods dis-
cussed in this section is given in Table 2.

6.1 Bayesian tensor predictor regression

In recent years, Bayesian tensor predictor regression
models have gained an increasing attention. For example,
Suzuki [91] develop a Bayesian framework based on the ba-
sic tensor linear regression model

(32) Yi = 〈W ,Xi〉+ εi,

where Yi ∈ R is a univariate response, Xi ∈ R
M1×···×MK is a

tensor-valued predictor, W ∈ R
M1×···×MK is the coefficient

tensor, and 〈·, ·〉 is the tensor inner product (2). The error
terms εi’s are assumed i.i.d. following a normal distribution
N (0, σ2). To achieve parsimony in free parameters, a rank-r
CP structure (5) is imposed on the coefficient tensor W :

W = [[U (1), ...,U (K)]],

where U (k) ∈ R
r×MK (k = 1, 2, ...,K) are latent factors. To

complete model specification, a Gaussian prior is placed on
the latent matrices:

π(U (1), ...,U (K)|r) ∝ exp
{
− r

2σ2
p

K∑
k=1

Tr[U (k)�U (k)]
}
,

and an independent prior is used for the rank r:

π(r) =
1

Nξ
ξr(M1+···+MK),

where 0 < ξ < 1 is a positive real number, and Nξ is the
normalizing constant.

In order to adjust for other covariates in the model and
accommodate various data types of the response variable,
Guhaniyogi et al. [29] propose a Bayesian method based
on the generalized tensor predictor regression model (12).
Given a scalar response y, vectorized predictors z ∈ R

p and
a tensor predictor X ∈ R

p1×p2×...×pD , the regression model
is given by

(33) y ∼ f(α+ z�γ + 〈X ,B〉, σ),

where f(μ, σ) is a family of distributions with location μ
and scale σ, γ ∈ R

p are coefficients for predictors z, B ∈
R

p1×p2×...×pD is the coefficient tensor, and 〈·, ·〉 is the tensor
inner product (2). A CP structure is imposed on the tensor

Table 2. Summary of Bayesian tensor regression methods.

Name
Predictor Response Tensor

Algorithm
Type Type Structure

Suzuki [91] Tensor Scalar CP Gibbs
BTR [29] Tensor+Vector Scalar CP Gibbs

Zhao et al. [114] Tensor Scalar Nonparametric MAP
OLGP [38] Tensor Scalar Nonparametric OLGP
AMNR [42] Tensor Scalar Nonparametric MC

Yang and Dunson [105] Vector (Categorical) Scalar (Categorical) Tucker Gibbs
CATCH [72] Tensor+Vector Scalar (Categorical) Tucker MLE

BTRR [30] Vector Tensor CP Gibbs
Spencer et al. [87, 88] Vector Tensor CP Gibbs

SGTM [26] Vector Symmetric Tensor CP Gibbs
BSTN [52] Vector Tensor Other Gibbs
SGPRN [58] Matrix Tensor Nonparametric VI
MLTR [37] Tensor Tensor Tucker Gibbs
ART [10] Tensor Tensor CP Gibbs

Gibbs: MCMC with Gibbs sampling. MAP: Maximum a posteriori. MC: Monte Carlo Method. MLE: Maximum likelihood
estimator. OLGP: Online local Gaussian process [71, 99]. VI: Variational Inference.
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coefficient B:

B =
R∑

r=1

β
(r)
1 ◦ · · · ◦ β(r)

D .

Under the Bayesian framework, Guhaniyogi et al. [29]
propose a multiway Dirichlet generalized double Pareto (M-

DGDP) prior over the latent factors β
(r)
j . This prior pro-

motes the joint shrinkage on the global and local component
parameters, as well as accommodates dimension reduction
by favoring low-rank decompositions. Specifically, the M-
DGDP prior first assigns a multivariate Gaussian prior on

β
(r)
j :

(34) β
(r)
j ∼ N (0, (φrτ)W jr), j = 1, . . . , D.

The shrinkage across components is induced in an exchange-
able way, with a global scale parameter τ ∼ Gamma(aτ , bτ )
adjusted in each component by φr for r = 1, 2, ..., R, where
Φ = (φ1, ..., φR) ∼ Dirichlet(α1, ..., αR) encourages shrink-
age towards lower ranks in the CP structure. In addi-
tion, W jr = diag(wjr,1, · · · , wjr,pj ), j = 1, 2, ..., D and
r = 1, 2, ..., R, are scale parameters for each component,
where a hierarchical prior is used,

(35) wjr,k ∼ Exp(λ2
jr/2), λjr ∼ Gamma(aλ, bλ).

In the M-DGDP prior, flexibility in estimating Br =

{β(r)
j ; 1 ≤ j ≤ D} is achieved by modeling individual-

level heterogeneity via element-specific scaling parameters
wjr,k’s. The common rate parameter λjr shares information
between individual elements, hence leads to shrinkage at the
local scale.

Besides linear models, a class of Gaussian process (GP)
based nonparametric approaches have been proposed to
model nonlinear relationships in the tensor-valued pre-
dictors. Given a dataset of N paired observations D =
{(Xn, yn)|n = 1, 2, ..., N}, Zhao et al. [114] aggregate all
N tensor inputs Xn (n = 1, 2, ..., N) into a design tensor
X ∈ R

N×I1×···×IM , and collect the responses in the vec-
tor form y = [y1, ..., yN ]�. The distribution of the response
vector can be factored over the observations as

(36) y ∼
N∏

n=1

N (yn|f(Xn), σ
2).

Here f(·) is a latent function on which a GP prior is placed

(37) f(X ) ∼ GP(m(X ), k(X ,X ′)|θ),

where k(X ,X ′) is the covariance function (kernel), θ is the
associated hyperparameter vector, and m(X ) is the mean
function which is set to be zero in [114]. The authors further
propose to use the following product kernel in (37):

(38) k(X ,X ′) = α2
D∏

d=1

exp(
D(p(x|ΩX

d ) ‖ q(x′|ΩX ′

d ))

−2β2
d

),

where α is a magnitude hyperparameter, βd denotes the d-
mode length-scale hyper-parameter, and D is the symmetric
Kullback-Leibler (KL) divergence defined as

D(P ||Q) = KL(P ||Q) + KL(Q||P ).

The distributions p and q in the symmetric KL divergence
are characterized by the hyper-parameters Ωd, which can
be estimated from the d-mode unfolding matrix Xd of ten-
sor X by treating each Xd as a generative model with Id
variables and I1 × · · · × Id−1 × Id+1 × · · · × ID observa-
tions. Given the prior construction, the hyperparameters
θ = {α, βd|d = 1, 2, ..., D} and σ are then estimated by max-
imum a posteriori (MAP). While the computational com-
plexity of GP-based methods is usually excessive, Hou et
al. [38] take advantage of the online local Gaussian Process
(OLGP) and present a computationally-efficient approach
for the nonparametric model in (36)-(38).

To further mitigate the burden of high-dimensionality,
Imaizumi and Hayashi [42] propose an additive-
multiplicative nonparametric regression (AMNR) method
that concurrently decomposes the functional space and
the input space. This method is referred to as a doubly
decomposing nonparametric tensor regression method.

Denote a Sobolev space by Wβ(X ), which is a space of
β-times differentiable functions with the support X . Let
X =

⊗
k xk := x1 ⊗ · · · ⊗ xK be a rank-one tensor de-

noted by the outer product of vectors xk ∈ X (k) (⊗ is the
outer product). Let f ∈ Wβ(

⊗
k X (k)) be a function on a

rank-one tensor. For any f we can construct f̃(x1, ...,xK) ∈
Wβ(X (1)×· · ·×X (k)) such that f̃(x1, ...,xK) = f(X ) using
function decomposition as f̃ = f ◦ h with h : (x1, ...,xK) →⊗

k xk. Then f can be decomposed into a set of local func-
tions {fk

m ∈ Wβ(X (k))}m following [33]:

(39) f(X ) = f̃(x1, ...,xK) =

M∑
m=1

K∏
k=1

f (k)
m (xk),

where M represents the complexity of f (i.e., the “rank” of
the model).

Based on (39), for a rank-R tensor X , Imaizumi and
Hayashi [42] define the AMNR function as:

(40) fAMNR(X ) :=

M∑
m=1

R∑
r=1

λr

K∏
k=1

f (k)
m (x(k)

r ),

which is obtained by first writing a rank-R tensor as the sum
of R rank-one tensors, and then decomposing the function
into a set of local functions for each rank-one tensor. Under
the Bayesian framework, a GP prior is assigned to the local

functions f
(k)
m , and the Gaussian distribution (36) is uti-

lized to associate the scalar response Yi with the function
fAMNR(Xi).

While the previous studies mainly deal with regression
problems with continuous response variables, the probabilis-
tic methods can also apply to categorical-response regression
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problems with tensor-valued predictors, i.e., the tensor clas-
sification problems. For example, Pan et al. [72] propose
a covariate-adjusted tensor classification model (CATCH),
which jointly models the relationship among the covariates,
tensor predictors, and categorical responses. Given a cat-
egorical response Y ∈ {1, 2, ...,K}, a vector of covariates
U ∈ R

q, and tensor-variate predictors X ∈ R
p1×···×pM , the

CATCH model is proposed as

U |(Y = k) ∼ N (Φk,Ψ)(41)

X|(U = u, Y = k) ∼ TN(μk +α×̄(M+1)u;Σ1, ...,ΣM ),
(42)

where Φk ∈ R
q,Ψ ∈ R

q×q is positive definite, α ∈
R

p1×...×pM×q,μk ∈ R
p1×...×pM , and Σm ∈ R

pm×pm is posi-
tive definite for m = 1, ...,M . Here TN(·) is the tensor nor-
mal distribution, and ×̄(M+1) is the (M + 1)-mode tensor
vector product.

In equation (41), it is assumed that {Y,U} follow a clas-
sical LDA model, where Φk is the mean of U within class k
andΨ is the common within class covariance ofU . Similarly,
in equation (42) a common within class covariance structure
of X is assumed (denoted by Σm,m = 1, 2, ...,M), which
does not depend on Y after adjusting for the covariates U .
The tensor coefficient α characterizes the linear dependence
of tensor predictor X on the covariates U , and μk is the
covariate-adjusted within-class mean of X in class k.

While the goal is to predict Y given {U ,X}, based on the
Bayes’ rule the optimal classifier under the CATCH model
is derived by maximizing the posterior probability

Ŷ = arg max
k=1,2,...,K

P (Y = k|X = x,U = u)

= arg max
k=1,2,...,K

πkfk(x,u),
(43)

where πk = P (Y = k) and fk(x,u) is the joint density
function of X and U conditional on Y = k. Combining (41)
and (42), equation (43) is transformed into

Ŷ = arg max
k=1,2,...,K

{ak + γ�
k U + 〈Bk,X −α×̄(M+1)U〉},

where γk = Ψ−1(Φk − Φ1),Bk = [[μk − μ1;Σ
−1
1 , ...,Σ−1

M ]]
following a Tucker structure with the core tensor μk − μ1

and latent matrices Σ−1
1 , ...,Σ−1

M , and ak = log(πk/π1) −
1
2γ

�
k (Φk +Φ1)− 〈Bk,

1
2 (μk +μ1)〉 is a scalar that does not

depend on X or U .

Given i.i.d. samples {Y i,U i,X i}ni=1, the parameters
{πk,Φk,γk,μk,Bk}Kk=1 and {Σm}Mm=1 can be estimated to
build an accurate classifier based on the data. Regularization
is used when estimating Bk in order to facilitate sparsity.

Though not modeling tensor predictors, Yang and Dun-
son [105] employ tensor methods to deal with classification
problems with categorical predictors. Specifically, [105] de-
velop a framework for nonparametric Bayesian classifica-

tion through performing decomposition on the tensor con-
structed from the conditional probability

P (Y = y|X1 = x1, ..., Xp = xp),

with a categorical response Y ∈ {1, 2, ..., d0} and a vector of
p categorical predictors X = (X1, X2, ..., Xp)

�. The condi-
tional probability can be structured as a d0 × d1 × · · · × dp-
dimensional tensor, where dj (j = 1, 2, ..., p) denotes the
number of levels of the jth categorical predictor Xj . This
tensor is called a conditional probability tensor, and the
set of all conditional probability tensors is denoted by
Pd1,...,dp(d0). Therefore, P ∈ Pd1,...,dp(d0) implies

Py,x1,...,xp ≥ 0 for every y, x1, ..., xp;

d0∑
y=1

Py,x1,...,xp = 1 for every x1, ..., xp.

Since all the conditional probabilities are entries in the
conditional probability tensor, the classification problem is
converted into a tensor decomposition problem. Addition-
ally, Yang and Dunson [105] prove that every conditional
probability tensor P ∈ Pd1,...,dp(d0) can be expressed by a
Tucker structure

Py,x1,...,xp = P (y|x1, ..., xp)

=

k1∑
h1=1

· · ·
kp∑

hp=1

λh1h2...hp(y)

p∏
j=1

π
(j)
hj

(xj),

with all positive parameters satisfying

d0∑
c=1

λh1h2...hp(c) = 1, for every h1, h2, ..., hp,

kj∑
h=1

π
(j)
h (xj) = 1, for every pair of j, xj .

The inference of the Tucker coefficients is carried out
under the Bayesian framework. Specifically, independent
Dirichlet priors are assigned to the parameters Λ =

{λh1,...,hp(c), c = 1, 2, ..., d0} and π = {π(j)
hj

(xj), hj =

1, 2, ..., kj} (xj = 1, 2, ..., dj , hj = 1, 2, ..., kj , j = 1, 2, ..., p):{
λh1,...,hp(1), ..., λh1,...,hp(d0)

}
∼ Dirichlet(

1

d0
, ...,

1

d0
),{

π
(j)
1 (xj), ..., π

(j)
kj

(xj)

}
∼ Dirichlet(

1

kj
, ...,

1

kj
), j = 1, ..., p.

These priors impose the non-negativity and sum-to-one con-
straints naturally and lead to conditional conjugacy in pos-
terior computation. Additionally, [105] assign priors on the
hyper-parameters in the Dirichlet priors to promote a fully
Bayesian treatment. These priors place most of the proba-
bility on few elements to induce sparsity in their vectors.
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6.2 Bayesian tensor response regression

Guhaniyogi and Spencer [30] propose a Bayesian regres-
sion model with a tensor response and scalar predictors.
Let Yt ∈ R

p1×p2×...×pD be a tensor-valued response, and
xt = (x1,t, ..., xm,t) ∈ X ⊂ R

m be an m-dimensional vector
predictor measured at time t. Assuming that both the re-
sponse Yt and the predictors xt are centered around their
respective means, the proposed regression model for Yt on
xt is given by

(44) Yt = Γ1x1,t + · · ·+ Γmxm,t + Et, i = 1, 2, ..., n,

where Γk ∈ R
p1×p2×...×pD , k = 1, 2, ...,m is the tensor

coefficient corresponding to the predictor xk,t, and Et ∈
R

p1×p2×...×pD represents the error tensor. To account for the
temporal correlation in the response tensor, the error tensor
Et is assumed to follow a component-wise AR(1) structure
across t: vec(Et) = κvec(Et−1) + vec(ηt), where κ ∈ (−1, 1)
is the correlation coefficient, and ηt ∈ R

p1×p2×...×pD is a
random tensor, with each entry following a Gaussian distri-
bution N (0, σ2/(1− κ2)).

Next, a CP structure is imposed on each Γk to re-
duce the dimensionality of coefficient tensors, i.e., Γk =∑R

r=1 γ
(r)
1,k ◦ · · · ◦ γ

(r)
D,k. Although Guhaniyogi et al’s previ-

ously proposed M-DGDP prior (34)(35) over the latent fac-

tors γ
(r)
j,k can promote global and local sparsity, Guhaniyogi

and Spencer [30] claim that a direct application of M-DGDP
prior leads to inaccurate estimation due to a less desir-
able tail behavior of the coefficient distributions. Instead,
a multiway stick breaking shrinkage prior (M-SB) is as-

signed to γ
(r)
j,k, where the main difference compared to the

M-DGDP prior is how shrinkage is achieved across ranks.
The construction of the M-SB prior is given as follows. Let
W jr,k = diag(wjr,k,1, ..., wjr,k,pd

). Then we set

γ
(r)
j,k ∼ N (0, τr,kW jr,k).

Further set τr,k = φr,kτk to be scaling specific to rank r (r =
1, ..., R). Then effective shrinkage across ranks is achieved by
adopting a stick breaking construction for the rank-specific
parameter φr,k:

φr,k = ξr,k

r−1∏
l=1

(1− ξl,k), r = 1, ..., R− 1,

φR,k =

R−1∏
l=1

(1− ξl,k),

where ξr,k ∼iid Beta(1, αk). The Bayesian setting is then
completed by specifying

τk ∼ InvGamma(aτ , bτ ), wjr,k,i ∼ Exp(λ2
jr,k/2),

λjr,k ∼ Gamma(aλ, bλ),

where the hierarchical prior of wjr,k,i allows the local scale
parameters W jr,k to achieve individual-level shrinkage.

Based on the regression function (44), Spencer et al. [87,
88] consider a brain imaging application and develop an ad-
ditive mixed effect model that simultaneously measures the
activation due to stimulus at voxels in the gth brain re-
gion and connectivity among G brain regions. Let Yi,g,t ∈
R

p1,g×···×pD,g be the tensor of observed fMRI data in brain
region g for the ith subject at the tth time point, and
x1,i,t, ..., xm,i,t ∈ R be the activation-related predictors. The
regression function is given by

Yi,g,t = Γ1,gx1,i,t + · · ·Γm,gxm,i,t + di,g + Ei,g,t

for subject i = 1, 2, ..., n in region g = 1, 2, ..., G and time
t = 1, 2, ..., T . Here Ei,g,t ∈ R

p1,g×···×pD,g is the error ten-
sor, of which the elements are assumed to follow a nor-
mal distribution with zero mean and shared variance σ2

y.
Γk,g ∈ R

p1,g×···×pD,g represents activation due to the kth
stimulus at gth brain region. Each Γk,g is assumed to follow
a CP structure, and an M-SB prior is assigned to the latent
factors of the CP decomposition to determine the nature of
activation. Also, di,g ∈ R are region- and subject-specific
random effects that are jointly modeled to borrow infor-
mation across regions of interest. Specifically, a Gaussian
graphical LASSO prior is imposed on these random effects:

di = (di,1, ..., di,G)
� ∼ N (0,Ω−1), i = 1, 2, ..., n,

p(ω|ζ) = C−1
∏
g<g1

[DE(ωgg1 |ζ)]
G∏

g=1

[Exp(ωgg|
ζ

2
)]1Ω∈P+ ,

where P+ is the class of all positive definite matrices and
C is a normalization constant. The covariance ω = (ωgg1 :
g ≤ g1) is a vector of upper triangle and diagonal entries
of the precision matrix Ω. By properties of the multivariate
Gaussian distribution, a small value of ωgg1 stands for weak
connectivity between regions of interest (ROIs) g and g1,
given other ROIs. In practice, a double exponential prior is
employed on the off-diagonal entries of the precision matrix
Ω to favor shrinkage among these entries. A full Bayesian
prior construction is completed by assigning a Gamma prior
on ζ and an inverse Gamma prior on the variance parameter
σ2
y.

To study brain connectome datasets acquired using dif-
fusion weighted magnetic resonance imaging (DWI), Guha
and Guhaniyogi [26] propose a generalized Bayesian linear
model with a symmetric tensor response and scalar predic-
tors. Let Yi ∈ Y ⊂ R

p×...×p be a symmetric tensor response
with diagonal entries being zero, xi = (xi1, ..., xim)� be
m predictors of interest, and zi = (zi1, ..., zil)

� be l aux-
iliary predictors corresponding to the ith individual. Let
J = {j = (j1, ..., jD) : 1 ≤ j1 < · · · < jD ≤ p} be a set
of indices. Given that Yi is symmetric with dummy diag-
onal entries, it suffices to build a probabilistic generative
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mechanism for yi,j (j ∈ J ). In practice, a set of condition-
ally independent generalized linear models are utilized. Let
E(yi,j) = ωi,j , for j ∈ J , we have

ωi,j =

H−1(β0 +B1,jxi1 + · · ·+Bm,jxim + β1zi1 + · · ·+ βlzil),

where B1,j , ..., Bm,j respectively represents the entry j =
(j1, ..., jD) of the p × · · · × p symmetric coefficient ten-
sors B1, ...,Bm with diagonal entries zero, β0, β1, ..., βl ∈ R

are the intercept and coefficients corresponding to variables
zi1, ..., zil, respectively, and H(·) is the link function. The
model formulation implies a similar effect of any of the auxil-
iary variables (zi1, ..., zil) on all entries of the response tensor
but varying effects of the hth predictor on different entries
j ∈ J of the response tensor. To account for associations
between tensor nodes and predictors and to achieve parsi-
mony in tensor coefficients, a CP-like structure is imposed
on symmetric coefficient tensors B1, ...,Bm, i.e.,
(45)

Bh,j =

R∑
r=1

λh,ru
(r)
h,j1

· · ·u(r)
h,jD

, h = 1, 2, ...,m; j ∈ J ,

where u
(r)
h = (u

(r)
h,1, ..., u

(r)
h,p)

� ∈ R
p are latent factors and

λh,r ∈ {0, 1} is a binary inclusion variable determining if the
rth summand in (45) is relevant in model setting. Further let

ũh,k = (u
(1)
h,k, ..., u

(R)
h,k ), then the hth predictor of interest is

considered to have no impact on the kth tensor if ũh,k = 0.
In order to directly study the effect of tensor nodes related
to the hth predictor of interest, a spike-and-slab mixture
distribution prior is assigned on ũh,k:

ũh,k ∼
{
N (0,Mh), if ηh,k = 1

δ0, if ηh,k = 0
, ηh,k ∼ Bern(ξh),

Mh ∼ IW (S, ν), ξh ∼ U(0, 1),

where δ0 is the Dirac function at 0 and Mh is a covariance
matrix of order R × R. Here IW (S, ν) denotes an Inverse-
Wishart distribution with an R × R positive definite scale
matrix S and ν degrees of freedom. The parameter ξh corre-
sponds to the probability of the nonzero mixture component
and ηh,k is a binary indicator that equals 0 if ũh,k = δ0.
Thus, the posterior distributions of ηh,k’s can help identify
nodes related to a chosen predictor.

To impart increasing shrinkage on λh,r as r grows, a hi-
erarchical prior is imposed on λh,r:

λh,r ∼ Bern(νh,r), νh,r ∼ Beta(1, rζ), ζ > 1.

In addition, a Gaussian prior N (aβ , bβ) is placed on
β0, β1, ..., βl.

Recently, Lee et al. [52] develop a Bayesian skewed tensor
normal (BSTN) regression, which addresses the problem of
considerable skewness in the tensor response in a study of

periodontal disease (PD). For an order-K tensor response
Yi ∈ R

d1×···×dK with a vector of covariates xi ∈ R
p, the

regression model is given by

Yi = B×̄(K+1)xi + Ei, for i = 1, 2, ..., n,

where B ∈ R
d1×···×dK×p is an order-(K + 1) coefficient ten-

sor, ×̄(K+1) is the (K + 1)th mode vector product, and

Ei ∈ R
d1×···×dK is the error tensor. The skewness in the

distribution of Y is modeled by

Ei = |Z2i| ×K Λ+ Z1i,

where Λ = diag(λ1, ..., λdK
) ∈ R

dK×dK is a digonal ma-
trix with skewness parameters λ = (λ1, ..., λdK

), |M |
denotes a matrix whose elements are absolute values of
the corresponding elements in matrix M , and ×K is
the mode-K tensor matrix product. The tensor Z2i ∈
R

d1×···×dK follows a tensor normal distribution Z2i ∼
TN(0; Id1 , ..., IdK−1

,D2
σ), and is assumed to be indepen-

dent of Z1i ∼ TN(0;R1, ...,RK−1,DσRKDσ), where
R1, ...,RK are positive-definite correlation matrices, and
Dσ = diag(σ1, ..., σdK

) is a diagonal matrix of positive scale
parameters σ1, ..., σdK

. The parameterization for the ten-
sor normal Z1i via correlation matrices R1, ...,RK avoids
the common identifiability issue. Only the Kth mode of Z2i

is multiplied by a skewness matrix Λ = diag(λ1, ..., λdK
)

because the skewness level is assumed to be the same in
all combinations of the first (K − 1) modes in the PD
dataset. When λj is positive (or negative), the correspond-
ing marginal density of yi1,...,iK−1,j of tensor response Y is
skewed to the right (left).

Various prior distributions can be put on the parameters.
For example, an independent zero-mean normal density with
a pre-specified variance is utilized as the common prior for
λ = (λ1, ..., λdK

), and common independent inverse-gamma
distributions IG(g1, g2) with pre-specified shape g1 > 0 and
scale g2 > 0 are imposed on σ = (σ1, ..., σdK

). The para-
metric correlation matrices R1, ...,RK are assumed to be
equicorrelation matrices with independent uniform priors
Unif(−1, 1) for unknown off-diagonal elements. A tensor
normal distribution TN(0;C1, ...,CK+1) with zero mean
and known covariance matrices C1, ...,CK+1 is put on the
tensor coefficient B. Lee et al. [52] also propose an alterna-
tive prior distribution for B, where a spike-and-slab prior is
employed to introduce sparsity.

Similar to the tensor predictor regression, Gaussian Pro-
cess (GP) based nonparametric models are also studied for
regression problems with tensor responses. Li et al. [58] pro-
pose a method based on the Gaussian process regression
networks (GPRN), where no special kernel structure is pre-
assumed. Tensor/matrix-normal variational posteriors are
introduced to improve the inference performance.

The aforementioned methods assume a low-dimensional
structure of the predictors (either in the form of a vector
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or a matrix), and are generally incapable of modeling high-
dimensional tensor predictors. Under such circumstances,
various tensor-on-tensor methods are proposed to deal with
regression problems with both tensor-valued responses and
predictors, and some are analyzed under the Bayesian frame-
work. Given a tensor response Yi ∈ R

p1×...×pK and tensor
predictors Xi ∈ R

m1×...×mK , Hoff [37] associate Yi and Xi

through a Tucker structure (6)

(46) Yi = Xi ×1 B1 ×2 B2 ×3 · · · ×K BK + Ei,

whereB1, ...,BK are matrices of dimension p1×m1, ..., pK×
mK respectively. The error tensors Ei are i.i.d with dimen-
sion p1×· · ·×pD, and are assumed to follow a tensor normal
distribution

Ei ∼ TN(0;Σ1, ...,ΣK).

Under the Bayesian framework, matrix normal priors are
assigned to Bk|Σk, and inverse Wishart priors are imposed
on Σk (k = 1, 2, ...,K) to deliver efficient posterior compu-
tation.

Hoff [37] require that the responses and predictors have
the same number of modes. Lock [63] circumvent this re-
striction by employing a regression structure based on the
tensor contraction product in (14). Utilizing the same struc-
ture, Billio et al. [10] develop a Bayesian dynamic regression
model that allows tensor-valued predictors and responses to
be of arbitrary dimension. Specifically, denote the tensor
response by Yt ∈ R

p1×...×pD1 and the tensor predictor mea-
sured at time t by Xt ∈ R

q1×...×qD2 . Billio et al. [10] propose
the following dynamic regression model:

Yt =

q∑
j=1

Bj ∗ Yt−j +A ∗ Xt + Et,

where Bj and A are coefficient tensors of dimension p1 ×
· · ·×pD1 ×p1×· · ·×pD1 and p1×· · ·×pD1 × q1×· · ·× qD2 ,
respectively, and ∗ is the tensor contraction product (4). The
random error tensor Et follows a tensor normal distribution,
Et ∼ TN(0;Σ1, ...,ΣD1). The parsimony of coefficients is
achieved by CP structures on the tensor coefficients, and an
M-DGDP prior is assigned to the latent factors to promote
shrinkage across tensor coefficients and improve computa-
tional scalability in high-dimensional settings.

6.3 Theoretical properties of Bayesian
tensor regression

In this section, we discuss the theoretical properties for
several Bayesian tensor regression methods.

In [91], the in-sample predictive accuracy of an estimator
coefficient tensor Ŵ in (32) is defined by

‖Ŵ −W∗‖2n :=
1

n

n∑
i=1

〈Xi, Ŵ −W∗〉2,

where W∗ is the true coefficient tensor, {Xi}ni=1 are the
observed input samples. Here ‖ ·‖n is not the usual l2-norm.
The out-of-sample predictive accuracy is defined by

‖Ŵ −W∗‖2L2(P (X)) := EX∼P (X)[〈X, Ŵ −W∗〉2],

where P (X) is the distribution of X that generates the ob-
served samples {Xi}ni=1 and the expectation is taken with
respect to P (X).

Assume that the l1-norm of Xi is bounded by 1, the con-
vergence rate of the expected in-sample predictive accuracy
of the posterior mean estimator

∫
WdΠ(W|Y1:n),

E

[∥∥∥∥
∫

WdΠ(W|Y1:n)−W∗
∥∥∥∥
2

n

]
,

is characterized by the actual degree of freedom up to a log
term. Specifically, let d∗ be the CP-rank of the true tensor
W∗, and M1, ...,MK be the dimensions for each order of
W∗, the rate is essentially

O

(
degree of freedom

n

)
= O

(
d∗(M1 + · · ·+MK)

n

)

up to a log term and is optimal. Although the true rank d∗

is unknown, by placing a prior distribution on the rank, the
Bayes estimator can appropriately estimate the rank and
give an almost optimal rate depending on the true rank. In
this sense, the Bayes estimator is adaptive to the true rank.
Additionally, frequentist methods often assume a variant of
strong convexity (e.g., a restricted eigenvalue condition [9]
and the restricted strong convexity [70]) to derive a fast
convergence rate of sparse estimators such as Lasso and the
trace-norm regularization estimator. In contrast, the con-
vergence rate in [91] does not require the strong-convexity
assumption in the model.

In terms of the out-of-sample predictive accuracy, the
convergence rate achieved is also optimal up to a log term
under the infinity norm thresholding assumption (‖W∗‖∞ <
R, where R > 0). Specifically, the rate is

O

(
d∗(M1 + · · ·+MK)

n
(R2 ∨ 1)

)

up to a log factor.
Based on equation (33), Guhaniyogi et al. [29] prove the

posterior consistency of the estimated coefficient tensor B.
Define a Kulback-Leibler (KL) neighborhood around the
true tensor B0

n as

Bn =

{
Bn :

1

n

n∑
i=1

KL
(
f(yi|B0

n), f(yi|Bn)
)
< ε

}
,

where f(·) is the glm density in (33). Let Πn be the poste-
rior probability given n observations, Guhnaiyogi et al. [29]
establish the posterior consistency by showing that

Πn(B
c
n) → 0 a.s. as n → ∞
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under the probability measure induced by the B0
n when the

prior πn(Bn) satisfies a concentration condition. Based on
this result, Guhaniyogi et al. further establish the posterior
consistency for the M-DGDP prior in their study.

In a subsequent work [27], the authors relax the key as-
sumption in [29] which requires that both the true and fitted
tensor coefficients have the same rank in CP decomposition.
Instead, the theoretical properties are obtained based on a
more realistic assumption that the rank of the fitted ten-
sor coefficient is merely greater than the rank of the true
tensor coefficients. Under additional assumptions, the au-
thors prove that the in-sample predictive accuracy is upper
bounded by a quantity given below:

EB0
n

∫
‖Bn − B0

n‖2nΠ(Bn|y1:n, X1:n) ≤ AHn/n,

where Hn = o{log(n)d} and A are positive constants de-
pending on the other parameters. By applying Jensen’s in-
equality

EB0
n
[‖E(Bn|Y1:n,X1:n)− B0

n‖2n]

≤ EB0
n

∫
‖Bn − B0

n‖2nΠ(Bn|Y1:n, X1:n),

the posterior mean of the tensor coefficient,
E(Bn|Y1:n, X1:n), converges to the truth with a rate
of order n−1/2 up to a log(n) factor, which is near-optimal.
Similar to Suzuki [91], this result on convergence rate does
not require a strong convexity assumption on the model.

For the AMNR function defined in equation (40),
Imaizumi and Hayashi [42] establish an asymptotic prop-
erty of the distance between the true function and its esti-
mator. Let f∗ ∈ Wβ(X ) (Wβ(X ) is the Sobolev space) be

the true function and f̂n be their estimator for f∗. Let M∗

be the rank of the true function. Then the behavior of the
distance ‖f∗ − f̂n‖ strongly depends on M∗. Let ‖f‖n be
the empirical norm satisfying

‖f‖2n :=
1

n

n∑
i=1

f(xi)
2.

When M∗ is finite, under certain assumptions and for some
finite constant C > 0, by [42], it follows that

E‖f̂n − f∗‖2n ≤ Cn−2β/(2β+maxk Ik),

where maxk Ik is the maximum dimension of the tensor pre-
dictor X . This property indicates that the convergence rate
of the estimator achieves the minimax optimal rate of es-
timating a function in Wβ on a compact support in R

Ik .
The convergence rate of AMNR depends only on the largest
dimension of X .

When M∗ is infinite, by truncating M∗ at a finite value
M , the convergence rate is nearly the same as the case of

finite M∗, which is slightly worsened by a factor γ/(1 +
γ) [42]:

E‖f̂n − f∗‖2n ≤ C(n−2β/(2β+maxk Ik))γ/(1+γ).

For the CATCH model in (41)-(43), Pan et al. [72] estab-
lish the asymptotic properties for a simplified model, where
only the tensor predictor X is collected (the covariates U
are not included). They define the classification error rate
of the CATCH estimator and that of the Bayes rule as

Rn = Pr(Ŷ (X new|B̂k, π̂k, μ̂k) �= Y new),

R = Pr(Ŷ (X new|Bk, πk,μk) �= Y new),

where B̂k, π̂k and μ̂k are the estimated coefficients, and
Bk, πk and μk are true coefficients. Under certain condi-
tions, Rn → R with probability tending to 1. In other words,
CATCH can asymptotically achieve the optimal classifica-
tion accuracy.

In [105], Yang and Dunson establish the posterior con-
traction rate of their proposed classification model. Sup-
pose that the data are obtained for n observations yn =
(y1, ..., yn)

� (yi ∈ {1, 2, ..., d0}), which are condition-
ally independent given Xn = (x1, ...,xn)

� with xi =
(xi1, ..., xipn)

�, xij ∈ {1, ..., d} and pn � n. Assume that the
design points x1, ...,xn are independent observations from
an unknown probability distribution Gn on {1, 2, ..., d}pn .
Denote

d(P, P0) =∫ d0∑
y=1

|P (y|x1, ..., xp)− P0(y|x1, ..., xp)|Gn(dx1, ..., dxp),

where P0 is the true distribution, and P is the estimated
distribution. Then under the given prior and other assump-
tions, it follows that

Πn{P : d(P, P0) ≥ Mεn|yn,Xn} → 0 a.s.,

where εn → 0 (nε2n → ∞,
∑

n exp(−nε2n) < ∞), M is a
constant, and Πn(A|yn,Xn) is the posterior distribution of
A given the observations. Based on this result, Yang and
Dunson [105] further prove that the posterior convergence
of the model can be very close to n−1/2 under some near
low rankness conditions.

Among tensor response regression problems, Guha and
Guhaniyogi [26] establish the convergence rate for predic-
tive densities of their proposed SGTM model. Specifically,
let f∗(Y|x) be the true conditional density of Y given x and
f(Y|x) be the random predictive density for which a pos-
terior is obtained. Define an integrated Hellinger distance
between f∗ and f as

DH(f, f∗)=

√∫ ∫
(
√

f(Y|x)−
√

f∗(Y|x))2νY(dY)νx(dx),

Bayesian methods in tensor analysis 269



where νx is the unknown probability measure for x and νY
is the dominating measure for f and f∗. For a sequence εn
satisfying 0 < εn < 1, εn → 0, and nε2n → ∞, under certain
conditions it satisfies

Ef∗Πn{DH(f, f∗) > 4εn|{Yi,xi}ni=1} < 4e−nε2n

for all large n, where Πn is the posterior density. This result
implies that the posterior probability outside a shrinking
neighborhood around the true predictive density f∗ con-
verges to 0 as n → ∞. Under further assumptions, the con-
vergence rate εn can have an order close to the parametric
optimal rate of n−1/2 up to a log(n) factor.

6.4 Posterior computation

In terms of posterior inference methods, sampling meth-
ods such as MCMC and variational methods (e.g., Varia-
tional Expectation Maximization, Variational Inference, and
Variational Bayes) are the two popular choices for Bayesian
tensor analysis. MCMC is utilized in a majority of Bayesian
tensor regression and some Bayesian tensor completion (de-
composition) problems. The ergodic theory of MCMC guar-
antees that the sampled chain converges to the desired pos-
terior distribution, and sometimes the MAP result is utilized
to initialize the MCMC sampling for accelerating the con-
vergence [103, 84]. In order to reduce the computational cost
and adapt to different situations, batch MCMC and online
MCMC are also used for posterior sampling [41, 40].

As an alternative strategy to approximate posterior den-
sities for Bayesian models, variational inference is very
frequently employed in Bayesian tensor completion meth-
ods. These methods do not guarantee producing samples
from the exact target density, but they are in general
faster and more scalable to large datasets than MCMC
are. In this category, Variational Expectation Maximiza-
tion (VEM) [104, 117, 118, 116], Variational Inference
(VI) [119, 101, 39, 58], and Variational Bayes (VB) [82,
41, 112, 113, 115, 94, 64] are the classical choices, and
the recently developed auto-encoding VB algorithm is em-
ployed to deal with intractable distributions [62, 36]. Var-
ious studies have also adopted specific frameworks to re-
duce computational complexity (e.g., batch VB [41], varia-
tional sparse Gaussian Processes [94, 116, 119, 101]) and
accommodate online or streaming data (e.g., online VB-
EM [117], streaming VB [18, 108], and Assumed Density
Filtering/Expectation Propagation [19, 20, 73, 21]). Addi-
tionally, Bayesian tensor completion (regression) methods
also utilize other methods including MLE [72], MAP [114]
and EM [77, 35].

7. CONCLUSION

In Bayesian tensor analysis, the unique data structure
and its high dimensionality create challenges in both com-
putation and theory. Bayesian methods impose different de-
composition structures on the tensor-valued data or coeffi-
cients to reduce the number of free parameters. While CP,

Tucker and non-parametric decompositions are the most
commonly used decomposition structures, other decompo-
sitions have received some attention under the Bayesian
framework in recent years (e.g., tensor ring [64], tensor
train [39], neural [36]).

A full Bayesian model requires the complete specification
of a probabilistic model and priors over model parameters,
both of which depends on the data type. For example, in
tensor completion, when the tensor is continuous, the ele-
ments are usually assumed to follow a Gaussian distribu-
tion with the tensor mean following a decomposition struc-
ture [103, 62, 104]. The Gaussian distribution can be ex-
tended to model the binary data through a link function [84].
In terms of count data, an element-wise Poisson distribution
is often utilized to relate the decomposition structure to the
tensor-valued data, and a Dirichlet or Gamma prior can be
applied to latent factors or the core tensor to enforce the
non-negativity in coefficients [82, 41, 83]. For tensor regres-
sion problems, multivariate normal priors are placed over
latent factors in the CP decomposition, with a Gaussian-
Wishart prior on the hyper-parameters of the normal distri-
bution to achieve conjugacy [103, 14, 84]. Specific priors on
core tensor (e.g., the MGP prior [76, 77], the Gamma-Beta
hierarchical prior [41]) or latent factors [113] in CP/Tucker
structure can promote automatic rank inference by letting
the posterior decide the optimal rank. Sparsity priors such
as the M-DGDP prior [29, 10] and the M-SB prior [30] are
also popular choices for latent factors in the CP structure to
promote low rankness, and local/global sparsity. Integrating
robust, interpretable and computationally scalable Bayesian
tensor methods with complex models (e.g., nonlinear ma-
chine learning, reinforcement learning, causal inference, and
dynamic models) remains an interesting future direction.

Bayesian tensor regression has been widely used in ap-
plications, especially in medical imaging analysis (e.g., MRI
and EGG), where high resolution spatially correlated data
are produced. For both tensor-predictor and tensor-response
regressions, there is a need to model tensor-valued coeffi-
cients, which is achieved by using CP/Tucker decomposition
or nonparametric models that utilize Gaussian processes to
model the non-linear relationship in the coefficient tensor.
Posterior inference is conducted by Markov Chain Monte
Carlo (MCMC) with Gibbs sampling, optimization based
methods (e.g., variational Bayes), and streaming methods
(e.g., expectation propagation). It is still of interest to de-
velop scalable algorithms that accommodate challenging set-
tings such as streaming data analysis.

In terms of theoretical studies, most of the existing work
focus on (near-)optimal convergence rates for posterior dis-
tributions of the tensor coefficients in regression-related
problems [91, 27, 42, 72, 105, 26]. There are still many open
problems such as theoretical analysis for Bayesian tensor
completion (and other tensor problems that we did not cover
in this review) and convergence analysis of computational
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algorithms.
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completion in hierarchical tensor representations. In Compressed
sensing and its applications 419–450. Springer. MR3382114

[80] Rauhut, H., Schneider, R. and Stojanac, Ž. (2017). Low rank
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