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Factorizations in SL(2,Z) and simple

examples of inequivalent Stein fillings

Denis Auroux

We give simple examples of elements of SL(2,Z) admitting inequiv-
alent factorizations into products of Dehn twists. This can be inter-
preted in terms of inequivalent Stein fillings of the same contact
3-manifold by genus 1 Lefschetz fibrations over the disk.

1. Introduction

Lefschetz fibrations have risen to prominence in recent years as a convenient
way to describe symplectic 4-manifolds. In particular, Lefschetz fibrations
over the disk correspond to Stein fillings of contact 3-manifolds; see e.g.
[1, 12, 18, 19].

The classification of Lefschetz fibrations remains poorly understood to
date, with a wealth of “exotic” examples constructed in recent years. For
instance, genus 2 (or higher) Lefschetz fibrations over the disk have been used
to find contact 3-manifolds which admit infinitely many inequivalent Stein
fillings; see e.g. [2, 18]. By contrast, the classification in genus 1 has generally
been thought to be much simpler, perhaps due to the classical result of
Moishezon of Livne [16] according to which genus 1 Lefschetz fibrations
over S2 are holomorphic and classified by their number of singular fibers.

In this paper, we show that genus 1 Lefschetz fibrations over the disk are
much more subtle than their closed counterparts. Specifically, we describe
some simple examples of such fibrations which give different Stein fillings
(e.g., with different first homology groups) of the same contact 3-manifold.
These arise from inequivalent factorizations of the same element in SL(2,Z)
as a product of Dehn twists. These also lead to various other interesting small
examples, e.g. of different symplectic submanifolds in B4 filling the same 3-
strand braid, or different Lagrangian disks in a Stein manifold bounding the
same Legendrian knot.

Our first and main example, with four singular fibers, is a pair of Lef-
schetz fibrations that have already been studied in the context of mirror sym-
metry, where they occur as the mirrors of Hirzebruch surfaces (CP1-bundles
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over CP1): i.e., for instance, the derived Fukaya categories of vanishing cycles
of these Lefschetz fibrations are equivalent to the derived categories of coher-
ent sheaves of the latter spaces [5]. The two fillings are distinguished by their
first homology groups; see Proposition 3.1.

These examples sit inside rational elliptic fibrations with I8 singular
fibers (namely, as the complement of the I8 fiber and of a section); the exis-
tence of two distinct types of such rational elliptic fibrations is well-known in
algebraic geometry (as a consequence of the classification of extremal fibra-
tions [8, 14], see e.g. §VIII of [13]). One can similarly look at other examples
of extremal or nearly-extremal elliptic fibrations [14, 15], such as elliptically
fibered K3 surfaces with I18 or I19 singular fibers, or E(3) elliptic surfaces
with I29 singular fibers. While these do give rise to other examples, all those
we found can be understood in terms of smaller building blocks, and the
relevance of extremal elliptic fibrations to the question at hand is far from
clear.

The smallest possible examples one could hope for are genus 1 Lefschetz
fibrations with only three singular fibers (or even two, if one does not require
the fillings to be topologically distinct). It turns out that such examples
abound. For instance, the example described in §3 can be simplified by dis-
carding one of the singular fibers, at the expense of making its conceptual
significance less clear. However, there exist many other examples of inequiv-
alent genus 1 Lefschetz fibrations with three singular fibers and the same
boundary monodromy; we list some of them (found by a computer search) in
§4. Some of these examples can be distinguished by their homology. Others
require a more subtle invariant of Lefschetz fibrations which is introduced
in §5.

Finally, we point out that various classification results can still be hoped
for in spite of these fairly discouraging examples. In genus 1, the mapping
class group has a fairly simple structure, and one can enumerate the possible
factorizations of a given element into a given number of Dehn twists [20].
In fact, when there are only three singular fibers (and still in genus 1), the
invariant described in §5 seems to capture nearly all the information. In a
different vein, it follows from the results in [4] that any two Stein fillings of
a given contact 3-manifold with the same Euler characteristic and signature
become equivalent under stabilization by performing the same sequence of
handle attachments at the contact boundary; see Theorem 6.1. Thus the
phenomena we discuss below are inherently “unstable”.
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2. Lefschetz fibrations and monodromy factorizations

2.1. Lefschetz fibrations

A Lefschetz fibration over the disk is a map f : M4 → D2 whose smooth
fibers are oriented surfaces, and whose only critical points occur over the
interior and are modelled on the complex Morse singularity (z1, z2) 7→ z21 +
z22 in an orientation-preserving coordinate chart. The singular fibers of f thus
are obtained from a smooth fiber F by collapsing a simple closed curve,
called the vanishing cycle, to an ordinary double point; the monodromy
around each singular fiber is given by a right-handed Dehn twist about the
appropriate vanishing cycle.

The relation to symplectic geometry is the following. Assume the fiber
F has non-empty boundary, and is equipped with an exact symplectic struc-
ture, in such a way that all the vanishing cycles are exact Lagrangian
submanifolds (this can always be arranged when the vanishing cycles are
nonzero in homology). The total space M of the Lefschetz fibration f then
carries an exact symplectic structure, canonical up to deformation, while the
restriction of f to the boundary of M (a contact 3-manifold) endows ∂M
with an open book decomposition which supports the contact structure.
Topologically, M is obtained from F ×D2 by attaching standard Wein-
stein 2-handles along the vanishing cycles in parallel copies of the fiber in
∂(F ×D2). See e.g. [1, 19] for more details.

Taking the reference fiber F to lie over a base point near the boundary
of D2, and choosing a distinguished collection of paths that connect the base
point to the various critical values of f (assumed to be distinct), we obtain
a distinguished basis of vanishing cycles (γ1, . . . , γr) in F . The monodromies
around the various singular fibers, i.e. the Dehn twists τ1, . . . , τr about
γ1, . . . , γr, completely determine the topology of the Lefschetz fibration f ;
moreover, their product φ is the monodromy of the open book induced by
f on ∂M . Thus, we can describe f by its monodromy factorization, i.e. a
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decomposition of φ into a product of Dehn twists φ = τ1 · · · · · τr, in the
mapping class group Map(F, ∂F ) = π0Diff+(F, ∂F ).

The braid group Br acts simply transitively on the set of distinguished
bases of paths; the corresponding action on monodromy factorizations is
called Hurwitz equivalence, and is generated by the Hurwitz moves

(τ1, . . . , τi, τi+1, . . . , τr) ∼ (τ1, . . . , τiτi+1τ
−1
i , τi, . . . , τr) for 1 ≤ i < r

and their inverses. In terms of vanishing cycles, this amounts to replacing
γi and γi+1 by τi(γi+1) and γi respectively. Hurwitz equivalence classes of
monodromy factorizations correspond to isomorphism classes of Lefschetz
fibrations with a marked fiber, i.e. with a fixed identification of F with some
abstract oriented surface with boundary. Changing this identification by an
element ψ of the mapping class group amounts to replacing each vanishing
cycle γi by its image ψ(γi), i.e. to a global conjugation of the monodromy
factorization, replacing each τi by ψτiψ

−1. (Of course, this now yields a
factorization of ψφψ−1.)

The classification of Lefschetz fibrations over the disk thus amounts to
that of monodromy factorizations in the mapping class group up to Hurwitz
equivalence and global conjugation (cf. e.g. [3, 4]).

2.2. The genus one case

In this paper we will focus specifically on the case where F is a torus with
one boundary component. The mapping class group of T 2 is SL(2,Z), while
that of a genus 1 surface with one boundary component is

Γ := Map1,1 = S̃L(2,Z),

a central extension of SL(2,Z) by Z which can be represented as the preim-
age of SL(2,Z) in the universal cover of SL(2,R) (hence the notation).
Because every punctured elliptic curve is a double cover of the complex
plane branched at three points, Γ is also isomorphic to the 3-strand braid
group B3.

The group Γ is generated by the Dehn twists a and b about simple
closed curves α, β representing the two S1 factors of the torus, with the
relation aba = bab. The boundary twist δ = (ab)6 (i.e., the Dehn twist about
a boundary-parallel curve) is central and generates the kernel of the quotient
map Γ→ SL(2,Z). Since Dehn twists in Γ are determined by their images
in SL(2,Z), a monodromy factorization in Γ is specified unambiguously by
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its image in SL(2,Z), a fact that we will use repeatedly in the next sections.
Moreover, two factorizations of the same element of SL(2,Z) into products
of the same numbers of Dehn twists lift to factorizations of the same element
in Γ. (Both properties follow from the observation that an element of Γ is
determined by its images in SL(2,Z) and in the abelianization Ab(Γ) ' Z;
under the latter map, Dehn twists map to 1 while the central element δ
maps to 12).

To be more explicit, the generating Dehn twists a and b map to the two
generators

A =

(
1 1
0 1

)
and B =

(
1 0
−1 1

)
of SL(2,Z); more generally, the Dehn twist τp,q about a simple closed curve
representing the class p[α] + q[β] = (p, q) ∈ H1(F ) ' Z2 corresponds to the
matrix

Tp,q =

(
1− pq p2

−q2 1 + pq

)
∈ SL(2,Z).

3. The main example

Proposition 3.1. The monodromy factorizations

φ = τ−3,1 · τ0,1 · τ3,1 · τ1,0 = (a−3ba3) · b · (a3ba−3) · a and(3.1)

φ = τ−2,1 · τ0,1 · τ0,1 · τ2,1 = (a−2ba2) · b · b · (a2ba−2)(3.2)

of φ = a−8δ in Γ define inequivalent genus 1 Lefschetz fibrations f1, f2 over
the disk. The corresponding Stein fillings M1,M2 of the open book with mon-
odromy φ are distinguished by their first homology groups: H1(M1,Z) = 0
while H1(M2,Z) = Z/2.

Proof. The identities (3.1) and (3.2) can be checked either by direct calcu-
lation in Γ = 〈a, b | aba = bab〉, or by working in SL(2,Z), where it is easy
to verify that

T−3,1T0,1T3,1T1,0 =

(
4 9
−1 −2

)(
1 0
−1 1

)(
−2 9
−1 4

)(
1 1
0 1

)
=

(
1 −8
0 1

)
and T−2,1T0,1T0,1T2,1 =

(
3 4
−1 −1

)(
1 0
−1 1

)2(−1 4
−1 3

)
=

(
1 −8
0 1

)
.

The Lefschetz fibrations f1 and f2 are easily distinguished by the fact that
the vanishing cycles of f1 generate H1(F ) ' Z2 while those of f2 only gen-
erate an index 2 subgroup. Accordingly, the first homology groups of M1
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and M2, which are isomorphic to the quotients of H1(F ) by the span of the
vanishing cycles, are also different. �

Another way to distinguish the monodromy factorizations (3.1) and (3.2)
in Γ ' B3 is to consider their images in SL(2,Z/2) ' S3: while the factors
in (3.1) generate the whole group, those in (3.2) all map to the same element.

Remark 3.2. Viewed as a pair of factorizations in the braid group B3, this
example can be thought of as a simpler analogue of that given in §5 of [7]
(which involves products of 6 half-twists in B4). In fancier language, the
“generalized Garside problem” (i.e., whether a factorization is determined
by the product of its factors) also has a negative answer for products of
half-twists in B3.

Viewed as braid group factorizations, (3.1) and (3.2) determine prop-
erly embedded smooth symplectic surfaces Σ1 and Σ2 in the 4-ball, whose
boundary is the same transverse link. Namely, Σ1 and Σ2 (which can in fact
be chosen algebraic) are characterized up to isotopy by the requirement that
projection to the first two coordinates makes Σi a 3-sheeted branched cover
of the disk, with four simple branch points around which the monodromies
are given by the factors in (3.1) resp. (3.2); see e.g. [7, 11, 17]. The sym-
plectic surfaces Σ1 and Σ2 are easily distinguished by the fact that Σ1 is
connected while Σ2 is not. In this language, the symplectic 4-manifolds M1

and M2 are the double covers of B4 branched at Σ1 and Σ2 respectively. We
note that the trick used by Geng [9] to modify the example of [7] into a pair
of connected symplectic surfaces distinguished by the fundamental groups
of their complements fails in this example, as π1(B

4 \ Σ2) ' Z2 is too small
(namely, the fundamental groups of the complements would be quotients of
Z2 hence abelian, but for a smooth connected surface the first homology
group of the complement is always Z).

The Lefschetz fibrations f1 and f2 are closely related to the toric Landau-
Ginzburg mirrors of the Hirzebruch surfaces F1 (CP2 blown up at one point)
and F0 = S2 × S2 (or equivalently up to deformation, F2 = P(OP1(−2)⊕
OP1)) respectively; see §5 of [5] for a discussion of these examples from the
perspective of homological mirror symmetry. Specifically, the toric mirror
of Fk (k = 0, 1, 2), given by the Laurent polynomial Wk = x+ y + x−1 +
x−ky−1 : (C∗)2 → C, is an elliptic fibration over the complex plane, whose
fibers have four punctures instead of one. Modifying the fibrations W1 and
W2 by partial fiberwise compactification (to have once-punctured tori as
fibers) and choosing all the vanishing cycles to be exact, we obtain mirrors
of F1 and F2 which are exactly the Lefschetz fibrations f1 and f2.
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From another perspective, there are two different types of rational elliptic
fibrations with one I8 singular fiber and four ordinary (I1) nodal singular
fibers [13, 14]; f1 and f2 can be constructed from these by deleting the I8
fiber and a section.

The difference between f1 and f2 disappears after adding just one new
singular fiber with the same vanishing cycle α to both of them (i.e., adding
an extra factor τ1,0 = a to both (3.1) and (3.2)):

Lemma 3.3. The factorizations a−7δ = a · (a−3ba3) · b · (a3ba−3) · a and
a−7δ = a · (a−2ba2) · b · b · (a2ba−2) are Hurwitz equivalent.

Proof. We perform successive Hurwitz moves on the first expression, moving
the underlined factors across their neighbors (which undergo conjugation)
each time:

a · (a−3ba3) · b · (a3ba−3) · a ∼ (a−2ba2) · a · b · a · (a2ba−2)
∼ (a−2ba2) · b · a · b · (a2ba−2)
∼ a · (a−2ba2) · b · b · (a2ba−2).

�

Thus, attaching Weinstein 2-handles to M1 and M2 along the same Leg-
endrian knot in the boundary (note that ∂M1 = ∂M2 as contact manifolds)
yields new Stein manifolds M+

i = Mi ∪∂ Hi (carrying Lefschetz fibrations
f+i : M+

i → D2 with five singular fibers) which are deformation equivalent:
M+

1 'M
+
2 , and we denote this manifold simply by M+.

As pointed out by Paul Seidel, this implies:

Corollary 3.4. There exists a Legendrian knot K ⊂ ∂M+ which admits
two non-isotopic fillings by properly embedded Lagrangian disks D1, D2 ⊂
M+, ∂Di = K. The two fillings D1, D2 are distinguished by the first homol-
ogy group of their complements.

Proof. Take Di to be the co-core of the Weinstein handle Hi in M+
i , or in

other terms, the Lefschetz thimble associated to a vanishing path that runs
from the critical point of f+i which lies inside Hi straight to a base point
q ∈ ∂D2. The boundaries of D1 and D2 are the same Legendrian knot in
∂M+

1 = ∂M+
2 , namely the loop α inside the fiber (f+1 )−1(q) = (f+2 )−1(q).

Indeed, since the monodromy factorizations of the Lefschetz fibrations f+1
and f+2 are Hurwitz equivalent, the isomorphism between them is compatible
with the chosen markings of the reference fibers, and in particular maps α in
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(f+1 )−1(q) to the corresponding loop in (f+2 )−1(q). On the other hand, since
Di is the co-core of the handle Hi, its complement M+

i \Di retracts onto Mi,
and soH1(M

+
1 \D1) = 0 whileH1(M

+
2 \D2) ' Z/2, by Proposition 3.1. �

Remark 3.5. The fact that f1 and f2 become isomorphic after adding a
new singular fiber with monodromy a to each of them corresponds under
mirror symmetry to the classical fact that blowing up a point on S2 × S2

yields the same del Pezzo surface as blowing up two points on CP2. Namely,
as shown in [6], blowing up a del Pezzo surface modifies its mirror by adding
an extra vanishing cycle which is “pulled from the fiber at infinity”; in our
case these vanishing cycles represent the class [α], and passing from fk to
f+k amounts to passing from the mirror of a Hirzebruch surface to that of
its blowup.

4. Examples with two or three singular fibers

Modifying (3.1) by a single Hurwitz move, we can rewrite it as

(a−3ba3) · b · a · (a2ba−2),

which makes the last factor identical to that in (3.2). Removing that factor
produces a slightly smaller example, with only three singular fibers.

Example 4.1. The factorizations τ−3,1 · τ0,1 · τ1,0 = (a−3ba3) · b · a and
τ−2,1 · τ0,1 · τ0,1 = (a−2ba2) · b · b of the same element of Γ are not related by
Hurwitz and conjugation equivalence. They describe inequivalent genus 1
Lefschetz fibrations with three singular fibers, distinguished by their first
homology groups (0 vs. Z/2).

In fact, we can again perform a Hurwitz move to pull out the common
factor τ0,1 = b from the factorizations in Example 4.1. This yields a pair
of factorizations consisting of just two Dehn twists, which are not Hurwitz
equivalent (but are related by global conjugation by a).

Example 4.2. For all k ∈ Z, the element a−4(ab)3 ∈ Γ can be factored
as τk,1 · τk+2,1. These factorizations represent two distinct Hurwitz equiva-
lence classes depending on the parity of k, since a Hurwitz move transforms
τk,1 · τk+2,1 into τk−2,1 · τk,1. On the other hand, they are global conjugates
of each other (by powers of a).
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In fact, (3.1) can be rewritten in the form τ−3,1 · τ−1,1 · τ0,1 · τ2,1 by Hur-
witz moves, so (3.1) and (3.2) both arise as fiber sums of two of the factor-
izations in Example 4.2. In particular, they are related by Hurwitz moves
and a partial conjugation (affecting two factors), and the corresponding 4-
manifolds are related by a Luttinger surgery [3].

It is not hard to find other instances of pairs of factorizations describing
inequivalent genus 1 Lefschetz fibrations distinguished by their first homol-
ogy groups, as in Example 4.1. Perhaps more interesting is the existence of
elements of Γ that can be factored in more than two inequivalent ways, or
of examples that can be distinguished only by more subtle invariants. We
now give a few such examples (found by a computer search):

Example 4.3. The identities

T1,1 · T8,−3 · T7,−3 = T1,2 · T3,1 · T3,−1 = T1,3 · T2,1 · T3,−1 =

(
9 19
44 93

)
in SL(2,Z) lift to three factorizations of the same element of Γ into prod-
ucts of Dehn twists which all belong to different Hurwitz and conjugation
equivalence classes. The first two correspond to Lefschetz fibrations whose
total space is simply connected, while the third has a total space with first
homology group Z/5. All three are distinguished by the invariant defined in
§5 below, as they correspond to the three different minimal triples (11, 10, 3),
(5, 7, 6), and (5, 10, 5) respectively (see §5).

While this gives rise to three different Lefschetz fibrations filling the same
contact 3-manifold, it is not clear to us whether the two simply connected
fillings are different Stein manifolds, or the same manifold carrying two
different genus 1 Lefschetz fibrations. (Note that these fillings have the same
signature +1 and first Chern class c1 = 0.) It is also natural to ask whether
the symplectic surfaces in B4 determined by these factorizations (viewed
as products of half-twists in the braid group B3) are distinguished by the
fundamental groups of their complements. (This appears likely, but we have
not been able to prove it.)

Note that the latter two of the factorizations in Example 4.3 share the
same third factor; looking only at the first two factors, we have the following:

Lemma 4.4. The two factorizations in Γ corresponding to the identities

T1,2 · T3,1 = T1,3 · T2,1 =

(
1 −5
5 −24

)
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are not related by Hurwitz and conjugation equivalence. The total spaces of
the corresponding Lefschetz fibrations over the disk are related by a “com-
plex conjugation”, i.e. there is a diffeomorphism between them which lifts an
orientation-reversing diffeomorphism of the disk and maps fibers to fibers in
an orientation-reversing manner.

Proof. In both cases, we have a product of two Dehn twists τ1 · τ2 about loops
γ1, γ2 with algebraic intersection number γ2 · γ1 = +5. Thus, there exists an
oriented basis (u, v) of H1(F,Z) in which [γ2] = u and [γ1] = 5v + ku for
some k ∈ Z; i.e., the factorization is globally conjugate to τk,5 · τ1,0. Since a
change of basis (keeping [γ2] = u) modifies the integer k by a multiple of 5,
the classification up to global conjugation is given by the various possible
values of k mod 5. In our case, we find that τ1,2 · τ3,1 is conjugate to τ2,5 · τ1,0,
while τ1,3 · τ2,1 is conjugate to τ3,5 · τ1,0.

Observe now that an (inverse) Hurwitz move rewrites τ2,5 · τ1,0 into
τ1,0 · τ−3,5, and conjugating the factors of this latter expression by

(−3 1
5 −2

)
yields back τ2,5 · τ1,0. Hence, the Hurwitz equivalence class of τ2,5 · τ1,0 con-
sists entirely of factorizations that are globally conjugate to it. By a similar
argument, the same holds for τ3,5 · τ1,0. Thus the integer k mod 5 distin-
guishes the Hurwitz and conjugation equivalence classes of the two factor-
izations under consideration.

Finally, we observe that the orientation-reversing involution C =
(
0 1
1 0

)
conjugates T1,2 to T−12,1 and T3,1 to T−11,3 . Thus, simultaneously applying C
to the fibers of the first Lefschetz fibration (with monodromy τ1,2 · τ3,1)
and reversing the orientation of its base (which turns the monodromies into
their inverses) yields the second fibration (with monodromy factorization
τ1,3 · τ2,1). (A key feature that makes the construction work is that the global
monodromy

(
1 −5
5 −24

)
and its inverse are conjugate under C.) �

Example 4.5. The three factorizations in Γ corresponding to the identities

T1,1 · T2,−3 · T3,1 = T2,5 · T1,0 · T3,1 = T3,8 · T0,1 · T2,1 =

(
23 −101
64 −281

)
in SL(2,Z) belong to three different Hurwitz and conjugation equivalence
classes. The total spaces of the corresponding Lefschetz fibrations are all sim-
ply connected; the Lefschetz fibrations are distinguished by the correspond-
ing minimal (or small) triples, which are respectively (5, 2,−11), (5, 13,−1),
and (−3, 13, 2) (see §5).

The first two of these factorizations have the same third factor and differ
by applying (a conjugate of) the modification described in Lemma 4.4 to
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the first two factors. Meanwhile, the first and third factorizations differ by
the modification of Example 4.2 (the first expression can be rewritten as
T3,8 · T1,1 · T3,1 by a Hurwitz move).

Example 4.6. The four factorizations in Γ corresponding to the identities

T1,3 · T1,5 · T2,1 = T2,7 · T−1,1 · T1,1 = T2,7 · T0,1 · T2,1

= T1,2 · T−2,1 · T3,1 =

(
13 −56
49 −211

)
in SL(2,Z) belong to four different Hurwitz and conjugation equivalence
classes. The Lefschetz fibrations corresponding to the first two factorizations
are simply connected, and related by a complex conjugation (i.e., applying
the orientation-reversing involution

(
1 0
4 −1

)
to the fibers and reversing the

orientation of the base). The other two factorizations correspond to Stein
fillings whose first homology groups are Z/2 and Z/5 respectively. The four
Lefschetz fibrations are distinguished by their minimal triples, which are
respectively (−2, 5, 9), (−9, 5, 2), (−2, 12, 2) and (−5, 5, 5).

(The first and fourth factorizations are related by applying Hurwitz
moves and the modification of Lemma 4.4; the second and fourth ones as
well; whereas the second and third are related by the modification of Exam-
ple 4.2.)

5. An invariant of Lefschetz fibrations with
three singular fibers

Let f : M → D2 be a Lefschetz fibration with three singular fibers. Choose
a reference fiber F and a distinguished collection of vanishing paths, which
determines a basis of vanishing cycles (γ1, γ2, γ3) in F . Also pick arbitrary
orientations of the vanishing cycles. Then we can associate to this data the
triple of algebraic intersection numbers (x, y, z) = (γ2 · γ1, γ3 · γ1, γ3 · γ2) ∈
Z3. We now study the dependence of this triple on the choices made, and
define an equivalence relation on Z3 so that the equivalence class of (x, y, z)
is an invariant of f .

Changing the choices of orientations of one of the vanishing cycles changes
the signs of two of the elements in the triple, i.e. we have

(5.1) (x, y, z) ∼ (−x,−y, z) ∼ (−x, y,−z) ∼ (x,−y,−z).

More important is the effect of changing the distinguished basis of vanishing
paths (i.e., performing Hurwitz moves on the monodromy factorizations).
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Since [τγ1(γ2)] = [γ2] + (γ1 · γ2)[γ1], replacing (γ1, γ2, γ3) by (τγ1(γ2),
γ1, γ3) changes (x, y, z) to (−x, z − xy, y), or changing the orientations,

(5.2) (x, y, z) ∼ (x, xy − z, y).

Similarly, replacing (γ1, γ2, γ3) by (γ1, τγ2(γ3), γ2) yields the new triple (y −
zx, x,−z), or after an orientation change,

(5.3) (x, y, z) ∼ (zx− y, x, z).

Performing both in sequence, (x, y, z) ∼ (x, xy − z, y) ∼ (xy − (xy − z),
x, y) = (z, x, y). Thus

(5.4) (x, y, z) ∼ (z, x, y),

i.e. triples related by cyclic permutation are equivalent. Using cyclic permu-
tations, we can rewrite (5.2) and (5.3) in a slightly more symmetric manner,
to yield operations that we call mutations (in the first, second, or third
position of the triple):

(5.5) (x, y, z) ∼ (yz − x, z, y) ∼ (z, xz − y, x) ∼ (y, x, xy − z).

Note that these operations, which modify one element of the triple while
switching the two others, are involutive. To summarize:

Proposition 5.1. The equivalence class of the triple (x, y, z) up to sign
changes (5.1), cyclic permutations (5.4), and mutations (5.5) is an invariant
of f .

We now seek to find a preferred representative of a given equivalence
class.

Definition 5.2. A triple (x, y, z) is small if one of its elements is −1,
0 or 1. A triple with |x|, |y|, |z| ≥ 2 is minimal (resp. weakly minimal) if
|yz − x| > |x|, |xz − y| > |y|, and |xy − z| > |z| (resp. |yz − x| ≥ |x|, etc.)

In fact, a non-small triple is minimal if and only if either xyz < 0 or the
largest of |x|, |y|, |z| is less than half of the product of the other two.

Proposition 5.3. A given equivalence class either contains small represen-
tatives, or it contains exactly one weakly minimal triple up to sign changes
and permutations (cyclic permutations only if the weakly minimal triple is
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minimal, all permutations otherwise). These possibilities are mutually exclu-
sive.

Proof. Assume (x, y, z) is a minimal triple: then mutating in any of the three
positions replaces one of x, y, z by a new element that is the largest of the
new triple, and larger than half of the product of the two other elements.
Indeed, if say we replace z by ẑ = xy − z, minimality implies that |ẑ| > |z|,
which in turn implies that |ẑ| > |xy|/2, and in particular |ẑ| > |x|, |y|. The
new triple is neither small nor weakly minimal, since mutating again in the
same place yields back the original triple.

Consider now a triple (x, y, z) that is neither small nor weakly minimal,
with say |z| > |xy|/2 the largest element (for instance a triple obtained by
mutating a minimal triple in the third position). Then |x| < |yz|/2 and |y| <
|xz|/2. Thus, mutating in the first (resp. second) position replaces x (resp.
y) by x̂ = yz − x (resp. ŷ = xz − y), which is the largest element of the new
triple, as |x̂| > |yz|/2 (resp. |ŷ| > |xz|/2). However, mutating in the third
position causes that element to decrease.

Thus, if we start from a minimal triple and perform successive muta-
tions without ever backtracking (mutating twice the same position), we keep
obtaining larger and larger triples that are not weakly minimal, and in which
the element last modified is the largest (and larger than half of the product
of the two others). This ensures that only one minimal triple (up to cyclic
permutations and sign changes) exists in the equivalence class, and no small
triples are encountered.

If the initial triple is weakly minimal but not minimal, the argument
proceeds similarly, except one of the mutations leads to an equality. If say
|xy − z| = |z|, then we must have z = xy/2 (since xy 6= 0), and the mutation
takes (x, y, z) to (y, x, z). All other mutations lead to triples that are not
weakly minimal, with the newly modified element the largest of the triple.
Thus, arguing as in the minimal case, the only weakly minimal elements
in the equivalence class are permutations (not necessarily cyclic) and sign
changes of (x, y, z), and there are no small elements.

Finally, given any initial triple, if it is neither small nor weakly minimal
then some mutation replaces it by a smaller triple in the same equivalence
class, and repeating the process we eventually find either a small triple or a
weakly minimal one. �

Corollary 5.4. Two Lefschetz fibrations with three singular fibers which
correspond to different minimal triples (not related by sign changes and
cyclic permutations) are not isomorphic.
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Note that the monodromy factorizations in Examples 4.3, 4.5 and 4.6
are already given in a form where the corresponding triples are minimal (or
small, in the case of (5, 13,−1) in Example 4.5).

Two comments are in order. First, while this invariant can be defined
regardless of the genus of the fiber F , it is clearly a lot more powerful in the
genus 1 case, where the vanishing cycles are determined by their intersection
numbers up to a finite ambiguity. Second, this is an invariant of Lefschetz
fibrations but not necessarily of their total spaces, i.e. it is not obvious that
the Stein fillings corresponding to the various examples in §4 are all pairwise
different.

6. Stabilization by handle attachments

We now explain how the results in [4] imply the following statement, accord-
ing to which the examples discussed in the preceding sections are intrinsically
“unstable”.

Theorem 6.1. Let M1,M2 be two Stein fillings of the same contact 3-
manifold N , with the same Euler characteristic and signature. Then there
exists an exact cobordism W between N and some other contact manifold N ′

(consisting only of standard Weinstein handles) such that attaching W to
M1 and M2 yields deformation equivalent Stein fillings of N ′: M1 ∪∂ W '
M2 ∪∂ W .

Proof. By the work of Loi-Piergallini [12] and Akbulut-Ozbagci [1], the Stein
fillings M1 and M2 carry Lefschetz fibrations f1, f2 over the disk whose
boundary is an open book compatible with the contact structure on N . By
a result of Giroux (Theorem 4 of [10]), the open books induced by f1 and
f2 on N have a common positive stabilization.

Hence, after repeatedly stabilizing fi, i.e. attaching a 1-handle to the
fiber and adding a new singular fiber whose vanishing cycle runs once through
the new handle (which preserves the total space Mi, since the new 1- and 2-
handles form a cancelling pair), we can ensure that the fibers of f1 and f2 are
diffeomorphic, and the open books induced by f1 and f2 onN = ∂M1 = ∂M2

are isotopic.
Stabilizing further if needed, we can also ensure that the fibers of f1

and f2 have connected boundary. Thus, the monodromies of f1 and f2 are
described by factorizations F1,F2 of the same element φ as products of
Dehn twists in the mapping class group Mapg,1 of a genus g surface with
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one boundary component. Moreover, the vanishing cycles of f1 and f2 are
all non-separating, by exactness of M1 and M2.

Theorem 10 of [4] then implies the existence of integers a, b, c, d, k, l
and standard factorizations A,B, C,D in Mapg,1 such that the two factor-

izations F1 · (A)a · (B)b · (C)c · (D)d and F2 · (A)a+l · (B)b−l · (C)c+k · (D)d−k

are Hurwitz equivalent.
The Lefschetz fibrations f̂1 : M̂1 → D2 and f̂2 : M̂2 → D2 represented

by these factorizations are isomorphic, and hence correspond to two defor-
mation equivalent Stein fillings M̂1 ' M̂2 of a new contact manifold N ′,
obtained by attaching Weinstein handles to f1 and f2.

We now argue as in §5 of [4] to prove that k = l = 0, i.e. the standard
pieces attached to f1 and f2 are in fact the same. For this, we calculate
and compare the Euler characteristics and signatures of M̂1 and M̂2. The
key point is that the Lefschetz fibration corresponding to A has 10 more
singular fibers than that corresponding to B, hence the Euler characteristic
of its total space is higher by 10, while its signature is lower by 6; whereas
for C and D the Euler characteristics differ by 9 and the signatures by 5 (cf.
[4]). Using additivity (or Wall’s non-additivity for signature, depending on
how one thinks about the cobordism between Mi and M̂i), we conclude that

χ(M̂2)− χ(M̂1) = χ(M2)− χ(M1) + 10l − 9k and

σ(M̂2)− σ(M̂1) = σ(M2)− σ(M1)− 6l + 5k

(cf. Lemmas 15 and 16 in [4]). Since M1 and M2 have the same signature
and Euler characteristic by assumption, and M̂1 ' M̂2, we conclude that
10l − 9k = 0 and −6l + 5k = 0, hence k = l = 0, and M̂1 and M̂2 are indeed
obtained from M1 and M2 by attaching the same sequence of Weinstein
handles. �

Note that, while the arguments in [4] can be made algorithmic and one
could determine explicit values of a, b, c, d for a given pair of Lefschetz fibra-
tions, the construction given there is far from optimal – as evidenced e.g.
by the example in §3, where a single handle attachment suffices to make the
two fillings deformation equivalent.

References

[1] S. Akbulut and B. Ozbagci, Lefschetz fibrations on compact Stein
surfaces, Geom. Topol. 5 (2001), 319–334; Erratum: Geom. Topol. 5
(2001), 939–945.



i
i

“1-417” — 2015/3/7 — 22:28 — page 276 — #16 i
i

i
i

i
i

276 Denis Auroux

[2] A. Akhmedov, J. Etnyre, T. Mark and I. Smith, A note on Stein fillings
of contact manifolds, Math. Res. Lett. 15 (2008), 1127–1132.

[3] D. Auroux, Mapping class group factorizations and symplectic 4-
manifolds: some open problems, Problems on Mapping Class Groups
and Related Topics, Amer. Math. Soc., Proc. Symp. Pure Math., 74
(2006), 123–132.

[4] D. Auroux, A stable classification of Lefschetz fibrations, Geom. Topol.
9 (2005), 203–217.

[5] D. Auroux, L. Katzarkov and D. Orlov, Mirror symmetry for weighted
projective planes and their noncommutative deformations, Ann. Math.
167 (2008), 867–943.

[6] D. Auroux, L. Katzarkov and D. Orlov, Mirror symmetry for Del Pezzo
surfaces: Vanishing cycles and coherent sheaves, Inventiones Math. 166
(2006), 537–582.

[7] D. Auroux, V. S. Kulikov and V. V. Shevchishin, Regular homotopy of
Hurwitz curves, Izv. Math. 68 (2004), 521–542.

[8] A. Beauville, Les familles stables de courbes elliptiques sur P1 admettant
quatre fibres singulières, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982),
657–660.

[9] A. Geng, Two surfaces in D4 bounded by the same knot, J. Symplectic
Geom. 9 (2011), 119–122.
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