Advanced Lectures in Mathematics
Volume 31

Handbook of Group Actions

Volume I

Companion to the volume
Handbook of Group Actions, Volume II

edited by

Lizhen Ji
Athanase Papadopoulos
Shing-Tung Yau
Advanced Lectures in Mathematics, Volume 31
Handbook of Group Actions, Volume I

Companion to the volume
Handbook of Group Actions, Volume II

Volume Editors:
Lizhen Ji (University of Michigan, Ann Arbor)
Athanase Papadopoulos (Université de Strasbourg, France)
Shing-Tung Yau (Harvard University)

This work is published and sold in China exclusively by Higher Education Press of China.

All rights reserved. Individual readers of this publication, and non-profit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgement of the source is given. Reproduction, systematic copying, or mass reproduction of any material in this publication is permitted only under license from International Press. Excluded from these provisions is material in articles to which the author holds the copyright. (If the author holds copyright, notice of this will be given with the article.) In such cases, requests for permission to use or reprint should be addressed directly to the author.

Printed in the United States of America.

19 18 17 16 15 1 2 3 4 5 6 7 8 9
A group picture in front of the library of the original campus of Kunming University of Science and Technology
A group picture on the new campus of Kunming University of Science and Technology
Foreword to Volumes I and II

The decision of editing this Handbook came after an international conference we organized in Kunming (the capital of the Yunnan Province, China) on July 21–29, 2012, whose theme was “Group Actions and Applications in Geometry, Topology and Analysis”.

Kunming is a wonderful place for meetings and for mathematical discussions, especially in the summer, when the weather is most favorable. The conference was a success, from the mathematical and the human point of view. The city is warm, and the landscape is beautiful. There is a big lake, and a mountain behind the lake. Mathematicians like beauty. Hermann Weyl said: “My work always tried to unite the truth with the beautiful, but when I had to choose one or the other, I usually chose the beautiful.” (Quoted in Hermann Weyl’s Legacy, Institute for Advanced Study.)

The first two volumes of this Handbook are a record of the Kunming conference, but above all, we want them to be a convenient source for people working on or studying group actions. In spite of the fact that there were 63 talks, we covered at Kunming only a small part of this broad subject. In fact, group actions are so important that it is surprising that there was no available handbook on that subject so far. It is certainly the ubiquity of group actions that makes such a project so vast and therefore difficult to attain, and our aim for the time being is to start it. The present two volumes are the first on this important subject, and more volumes in the same series will appear in the future. Other conferences on the same subject are also planned in the future; the next one will be in Sanya (Hainan Province).

This Handbook will serve as an introduction and a reference to both beginners, non-experts, experts and users of group actions.

The conference in Kunming would not have gone so smoothly without the generous and devoted help of the local organizers, namely, Provost Ailing Gong, Dean Xianzhi Hu, Party Secretary Fengzao Yang, Deputy Dean Yaping Zhang, Youwei Wen, and Jianqiang Zhang from the Kunming University of Science and Technology. We would like to thank them for their work and hospitality.

Many people have also helped with refereeing and reviewing the papers in this Handbook, and we would like to thank them all for their help.

L. Ji, A. Papadopoulos, and S.-T. Yau
Ann Arbor, Strasbourg, and Cambridge MA
November, 2014
Introduction

The subject of this Handbook is groups and group actions. Although groups are omnipresent in mathematics, the notion of group was singled out relatively recently. We recall that the first definition of a (finite) group was formulated by Cayley around the middle of the nineteenth century. But the concept itself is inherent in the work of Galois (as a group of permutations of solutions of polynomial equations), and it is also contained — at least implicitly — in works of Ruffini, Lagrange and Gauss.

On the other hand, the idea of group is closely related to that of symmetry, or rather, to the mathematics behind symmetry, and the use of groups, seen as symmetries, can be traced back to antiquity. In fact, the notion of symmetry reflects a group action, not only in mathematics, but also in other sciences, including chemistry, biological physics, and the humanities. Symmetry is also one of the most fundamental concepts in art.

In mathematics, the notion of abstract group is at the heart of the formulation of many problems. Still, it is usually the concept of transformation group, or of a group acting on a space, rather than that of group alone, which is of fundamental importance. A group action brings in an additional notion to the group at hand, coming from the space on which the group acts. It is also the group action which makes groups interesting, useful and understandable. The precise identification of a group with a group of symmetries of a space is made through the action of the group on that space. But as the same group can act on different spaces, this group can be realized in several different ways as a group of symmetries.

The notion of transformation group was inherent in eighteenth-century geometry, in particular in projective geometry. But it was Klein, in his Erlangen program manifesto, and mathematicians like Lie, Poincaré and others who worked in the spirit of this program (some of them without being aware of the program) who highlighted the importance of a transformation group as a basic concept associated to a geometry, with the view that a geometry is characterized (and, in a certain way, it is defined) by a transformation group rather than by a space.

Central to contemporary research is the study of discrete group actions on homogeneous spaces, in particular on manifolds of constant curvature and locally symmetric spaces of finite volume. The most famous of such groups are probably the Fuchsian groups, the Kleinian groups and the arithmetic subgroups of semi-simple Lie groups, where not only the groups are studied individually, but their deformation theory is also very rich.

Other interesting classes of examples of infinite groups are, on the one hand, the automorphism groups Aut(F_n) and the outer automorphism groups Out(F_n)
of a free group F_n on n generators ($n \geq 2$), and on the other hand, the auto-
morphism groups $\text{Aut}(\pi_1(S_g))$ and the outer automorphism groups $\text{Out}(\pi_1(S_g))$
of fundamental group of (say, closed) surfaces S_g of genus g ($g \geq 2$), i.e., the
mapping class groups of S_g. One can also mention the Coxeter groups.

It can easily be argued that the free group is much simpler to apprehend
than a surface group; for instance, one can easily visualize the Cayley graph of
the free group F_n, a regular tree with vertices of order $2n$, and hence, one can
have a good picture of the geometry and combinatorics of that group, whereas
the Cayley graph of the fundamental group $\pi_1(S_g)$ is more complex. However,
it turns out that the theory of automorphism and of outer automorphisms of the
free group F_n is much less understood than that of the automorphism (and the
outer automorphism) group of the surface group S_g. The reason is that many
actions of $\text{Aut}(\pi_1(S_g))$ and $\text{Out}(\pi_1(S_g))$ arising naturally from the geometry and
the topology of surfaces have been studied, whereas for the groups $\text{Aut}(F_n)$ and
$\text{Out}(F_n)$, there are not as many actions on geometric or topological spaces. The
Coxeter groups are understood via to their action on Coxeter complexes.

The reader can refer to the beginning of the article by L. Ji in this volume,
where many group actions are listed.

The present volume of the *Handbook of Group Actions* is more especially con-
cerned with discrete group actions. It consists of 12 chapters, and it is divided
into four parts. Each part emphasizes special discrete groups and their actions.

Part I: Geometries and General Group Actions

This part contains 2 chapters.

Chapter 1 is by S.-T. Yau. It is a record of the talk that the author gave at
the Kunming conference, whose main theme was a view of a generalized geometry
based on the notion of operators rather than on that of space. The relation with
physics is also discussed. The concept of group is essential here, as a group of
operators and as a gauge group. Several constructions of Riemannian geometry
can be done in this setting, including the definitions of the Dirac and the Laplace
operators, the differential topology of operator geometry, Hodge theory, Yang-
Mills theory and conformal field theory. There is also a version of that theory for
discrete spaces.

Chapter 2 is by L. Ji, and it is a summary of group actions that arise in math-
ematics. It attempts to cover all the major fields where group actions play an
important role and to convey a sense of how broad group actions are in mathe-
matics and other sciences. Hopefully it will give some content to the statement
that group actions and symmetry, which are the same thing, are everywhere.

Part II: Mapping Class Groups and Teichmüller Spaces

This part concerns mapping class groups and Teichmüller spaces. The two
topics are related, because the action of the mapping class group of a surface
on the Teichmüller space of that surface constitutes one of the most interesting
(and may be the most interesting) action of that group, in terms of the richness
and the developments of the underlying theory, and also in terms of applications.
Furthermore, Teichmüller spaces equipped with actions of mapping class groups
are the primary source of holomorphic group actions in high dimensions, including
infinite dimensions. Teichmüller spaces are also related in other ways to the subject of group actions; for instance, an element of a Teichmüller space can be seen as a Fuchsian group acting on hyperbolic 2-space. This makes a relation between the present section and the section in Volume II of this handbook which deals with representations and deformations of subgroups of Lie groups.

In Chapter 3, A. Papadopoulos surveys some actions of mapping class groups. The latter admit actions which are of very different natures on spaces associated to surface: group-theoretic, holomorphic, combinatorial, topological, metric, piecewise-linear, etc. The author reviews in more detail actions on spaces of foliations and laminations, namely, measured foliations, unmeasured foliations, general geodesic laminations and the reduced Bers boundary. The chapter also contains a section on perspectives and open questions on actions of mapping class groups.

In Chapter 4, W. Su surveys two horofunction compactifications of Teichmüller space which are also spaces on which the mapping class group naturally acts. The horofunction boundary of a space is defined relatively to a certain metric. The two horofunction spaces that are studied in this chapter are associated to the Teichmüller metric and to the Thurston metric. The relation between these compactifications with Thurston and Gardiner-Masur’s compactifications is reviewed (results of Walsh and of Lui and Su), and the isometry groups of Teichmüller space equipped with the two metrics are considered.

In Chapter 5, F. Herrlich studies Teichmüller disks, that is, embeddings of the hyperbolic disk in Teichmüller space that are holomorphic and isometric. More precisely, the author studies the stabilizers of these discs in the Schottky space S_g of a closed Riemann surface of genus g, a quotient of the Teichmüller space T_g by a certain (non-normal) torsion-free subgroup of the mapping class group. The Schottky space is an infinite orbifold covering of Riemann’s moduli space. The stabilizer of a Teichmüller disk is sometimes a lattice in $\text{PSL}(2,\mathbb{R})$. Schottky space is, like Teichmüller space, a complex manifold. The author studies in particular the stabilizers in Schottky space of the Teichmüller disks and more generally the behavior of these disks under the covering map $S_g \to T_g$.

Chapters 6 and 7 concern infinite-dimensional Teichmüller spaces.

Chapter 6 by E. Fujikawa concerns actions of mapping class groups of surfaces of infinite type. There are various groups which play the role of a mapping class groups, and various spaces which play the role of Teichmüller spaces, in this infinite-dimensional setting, and the author considers some of them. In particular, she considers the action of the so-called asymptotically trivial mapping class group on the asymptotic Teichmüller space, a space which was first introduced by Sullivan. The main result she describes in this context is that for surfaces satisfying a condition of bounded geometry (a quasi-isometry invariant condition which involves lower and upper bounds on certain classes of geodesics, when the Riemann surface is equipped with a hyperbolic metric), the asymptotically trivial mapping class group coincides with that of the so-called stable quasiconformal mapping class group, that is, the subgroup of conformal mapping classes which have representatives which are the identity outside a compact subset. She then introduces another Teichmüller space, which is called the intermediate Teichmüller space, which is the quotient of the classical (quasiconformal) Teichmüller space by the
asymptotically trivial mapping class group. Under the same bounded geometry condition, this space inherits a complex structure from that of the quasiconformal Teichmüller space. In general, the asymptotically trivial Teichmüller modular group is a proper subgroup of the group of holomorphic automorphisms of the asymptotic Teichmüller space. The author then studies the dynamics of the various actions that arise, and conditions under which such group actions are properly discontinuous. She also gives an asymptotic version of the Nielsen realization problem.

Chapter 7 by K. Matsuzaki is a survey of the complex analytic theory of the universal Teichmüller space and of some of its subspaces. Roughly speaking, the universal Teichmüller space is the space of equivalence classes of hyperbolic metrics on the unit disc, where two structures are considered equivalent if they differ by an isotopy which induces the identity on the boundary S^1 of the disc. This space can also be defined as a certain quotient of the group of diffeomorphisms of the unit circle. It is termed universal because it contains naturally the Teichmüller spaces of all hyperbolic surfaces. In this theory, the representation of the elements of a Teichmüller space by Fuchsian groups is useful if not essential. One of the important concepts that are studied in detail in this chapter is a natural subset of the universal Teichmüller space which is not the Teichmüller space of a surface, namely, a space of equivalence classes of diffeomorphisms of the circle with Hölder continuous derivatives. The author shows that this space is equipped with a complex structure modeled on a complex Banach space. This complex structure is described through a careful study of the Bers embedding of the space in the space of Schwarzian derivatives. The diffeomorphisms of the circle with Hölder continuous derivatives are characterized by certain properties of their quasiconformal extensions to the unit disc, and the theory bears relations with the space of asymptotically conformal maps studied by Carleson.

Chapter 8 by T. Satoh concerns mapping class groups of surfaces, and it has a more algebraic nature. It is a survey of the Johnson homomorphisms associated to mapping class groups. These are homomorphisms associated to graded quotients of a certain descending filtration of these groups. Johnson defined in the 1980s the first homomorphism in the sequence, as a tool to study the Torelli group. A similar theory for automorphisms of free groups was developed before, by Andreadakis, in his thesis in the 1960s. The Johnson homomorphism for surface mapping class groups was generalized later on to the so-called Johnson homomorphisms of higher degrees, and several people did extensive work on them, including Morita, Hain, Satoh and others, and there are recent results on the same subject by Kawazumi-Kuno and by Massuyeau-Turaev.

Part III: Hyperbolic Manifolds and Locally Symmetric Spaces

Chapter 9 by G. J. Martin is a survey on the various aspects of the geometry and arithmetic of Kleinian groups. The author examines the geometry of Kleinian groups and he gives geometric conditions on isometry groups of hyperbolic 3-space in order to be discrete. He studies in detail the two-generator groups, giving several generalizations of Jørgensen's inequality for discreteness, and he discusses the classification of arithmetic generalized triangle groups. One motivation for this study is a problem which Siegel posed in 1943, namely, to identify the minimal co-
volume lattices of isometries of hyperbolic n-space, and more generally of rank-one symmetric spaces.

Chapter 10 by G. Prasad and A. S. Rapinchuk is a survey on several results related to the basic question: *Can you hear the shape of a drum?* They concern locally symmetric spaces of finite volume. The problem asks whether two Riemannian manifolds having the same spectrum, i.e., the same set of eigenvalues, are isometric. A closely related question is the so-called iso-length spectrum problem for locally symmetric spaces: if two Riemannian manifolds have the same length spectrum, i.e., the same set of lengths of closed geodesics, are they isometric or at least commensurable? The major portion of this paper deals with this latter question and with related problems on algebraic groups and their maximal algebraic tori and the authors give a fairly complete and detailed survey of results in this direction.

Part IV: Knot Groups

This part contains two chapters on representations of knot groups and twisted Alexander polynomials. The twisted Alexander polynomial is defined as a pair consisting of a group and a representation of that group. It generalizes the classical Alexander polynomial. The twisted Alexander polynomial is naturally defined for links in S^3 and more generally for finitely presentable groups. In some instances it can easily be calculated.

Chapter 11 by T. Morifuji is a survey on representations of knot groups and twisted Alexander polynomials, with a special focus on the twisted Alexander polynomial for finitely presentable groups introduced by Wada. This polynomial is associated to a representation into $\text{SL}(2, \mathbb{C})$. There are applications to fibering and genus detecting problems of knots in S^3. The twisted Alexander polynomial of a knot is seen as a \mathbb{C}-valued rational function on the character variety of the knot group, and it is also expressed in terms of Reidemeister torsion. The chapter also contains a comprehensive introduction to the classical Alexander polynomials and to the algebraic theory which is behind it (presentations of knot groups, Wirtinger presentations, Tietze transformations and Fox derivatives), as well as on representations of knot groups into $\text{SL}(2, \mathbb{C})$, their character varieties and their deformations. The author focuses on the deformation of an abelian representation to a nonabelian one and of a reducible representation to an nonreducible one.

Chapter 12 by M. Suzuki is devoted to the study of the existence of epimorphisms between knot groups. The author indicates by some examples how to detect the existence of a meridional epimorphism (that is, an epimorphism that preserves meridians) between knot groups and he gives explicit descriptions of some non-meridional epimorphisms. He shows that the existence of an epimorphism between finitely presentable groups implies that their twisted Alexander polynomials are divisible. He makes connections with other works on the subject, and in particular with the so-called Simon conjecture (a problem in Kirby’s list) whose general case was settled recently by Agol and Liu. The result says that every knot group admits an epimorphism onto at most finitely many knot groups.
Contents

Part I: Geometries and General Group Actions

Geometry of Singular Space.. 3

Shing-Tung Yau

1 The development of modern geometry that influenced our
 concept of space .. 4
2 Geometry of singular spaces ... 5
3 Geometry for Einstein equation and special holonomy group 5
4 The Laplacian and the construction of generalized Riemannian
 geometry in terms of operators 6
5 Differential topology of the operator geometry 9
6 Inner product on tangent spaces and Hodge theory 10
7 Gauge groups, convergence of operator manifolds and Yang-Mills
 theory ... 11
8 Generalized manifolds with special holonomy groups 13
9 Maps, subspaces and sigma models 14
10 Noncompact manifolds ... 16
11 Discrete spaces .. 16
12 Conclusion .. 17
13 Appendix ... 18
References .. 31

A Summary of Topics Related to Group Actions 33

Lizhen Ji

1 Introduction .. 35
2 Different types of groups ... 40
3 Different types of group actions 56
4 How do group actions arise .. 59
5 Spaces which support group actions 65
6 Compact transformation groups 70
Contents

7 Noncompact transformation groups 74
8 Quotient spaces of discrete group actions 80
9 Quotient spaces of Lie groups and algebraic group actions 86
10 Understanding groups via actions 87
11 How to make use of symmetry ... 95
12 Understanding and classifying nonlinear actions of groups 101
13 Applications of finite group actions in combinatorics 103
14 Applications in logic ... 104
15 Groups and group actions in algebra 105
16 Applications in analysis .. 105
17 Applications in probability .. 107
18 Applications in number theory .. 107
19 Applications in algebraic geometry 110
20 Applications in differential geometry 111
21 Applications in topology ... 112
22 Group actions and symmetry in physics 114
23 Group actions and symmetry in chemistry 121
24 Symmetry in biology and the medical sciences 123
25 Group actions and symmetry in material science and engineering .. 125
26 Symmetry in arts and architecture 126
27 Group actions and symmetry in music 126
28 Symmetries in chaos and fractals 128
29 Acknowledgements and references 130
References ... 130

Part II: Mapping Class Groups and Teichmüller Spaces

Actions of Mapping Class Groups 189

Athanase Papadopoulos

1 Introduction .. 190
2 Rigidity and actions of mapping class groups 192
3 Actions on foliations and laminations 196
4 Some perspectives ... 220
References .. 235

The Mapping Class Group Action on the Horofunction
Compactification of Teichmüller Space 249
Weixu Su
1 Introduction .. 250
2 Background .. 252
3 Thurston’s compactification of Teichmüller space 257
4 Compactification of Teichmüller space by extremal length 262
5 Analogies between the Thurston metric and the Teichmüller metric .. 266
6 Detour cost and Busemann points 269
7 The extended mapping class group as an isometry group 273
8 On the classification of mapping class actions on Thurston’s metric .. 276
9 Some questions ... 284
References .. 284

Schottky Space and Teichmüller Disks 289
Frank Herrlich
1 Introduction .. 290
2 Schottky coverings 291
3 Schottky space .. 293
4 Schottky and Teichmüller space 295
5 Schottky space as a moduli space 298
6 Teichmüller disks 299
7 Veech groups .. 301
8 Horizontal cut systems 303
9 Teichmüller disks in Schottky space 305
References .. 307

Topological Characterization of the Asymptotically Trivial
Mapping Class Group ... 309
Ege Fujikawa
1 Introduction .. 310
2 Preliminaries .. 312
3 Discontinuity of the Teichmüller modular group action 318
4 The intermediate Teichmüller space ... 319
5 Dynamics of the Teichmüller modular group 321
6 A fixed point theorem for the asymptotic Teichmüller modular group .. 324
7 Periodicity of asymptotically Teichmüller modular transformation 327
References .. 329

The Universal Teichmüller Space and Diffeomorphisms of the Circle with Hölder Continuous Derivatives 333
Katsuhiko Matsuzaki
1 Introduction .. 334
2 Quasisymmetric automorphisms of the circle 336
3 The universal Teichmüller space ... 340
4 Quasisymmetric functions on the real line 344
5 Symmetric automorphisms and functions 347
6 The small subspace .. 353
7 Diffeomorphisms of the circle with Hölder continuous derivatives .. 357
8 The Teichmüller space of circle diffeomorphisms 365
References .. 370

On the Johnson Homomorphisms of the Mapping Class Groups of Surfaces ... 373
Takao Satoh
1 Introduction .. 374
2 Notation and conventions .. 377
3 Mapping class groups of surfaces .. 377
4 Johnson homomorphisms of Aut F_n 381
5 Johnson homomorphisms of $M_{g,1}$... 397
6 Some other applications of the Johnson homomorphisms 401
Acknowledgements .. 403
References .. 403

Part III: Hyperbolic Manifolds and Locally Symmetric Spaces

The Geometry and Arithmetic of Kleinian Groups 411
Gaven J. Martin
1 Introduction .. 412
Contents

1. The volumes of hyperbolic orbifolds .. 415
2. The Margulis constant for Kleinian groups 420
3. The general theory ... 422
4. Basic concepts .. 424
5. Two-generator groups .. 427
6. Polynomial trace identities and inequalities 443
7. Arithmetic hyperbolic geometry .. 452
8. Spaces of discrete groups, $p, q \in \{3, 4, 5\}$ 465
9. (p, q, r)-Kleinian groups ... 475
References .. 488

Weakly Commensurable Groups, with Applications to Differential Geometry

Gopal Prasad and Andrei S. Rapinchuk

1. Introduction ... 496
2. Weakly commensurable Zariski-dense subgroups 501
3. Results on weak commensurability of S-arithmetic groups 505
4. Absolutely almost simple algebraic groups having the same maximal tori ... 509
5. A finiteness result ... 516
6. Back to geometry ... 519
Acknowledgements ... 522
References .. 522

Part IV: Knot Groups

Representations of Knot Groups into $\text{SL}(2, \mathbb{C})$ and Twisted Alexander Polynomials

Takayuki Morifuji

1. Introduction ... 528
2. Alexander polynomials ... 530
3. Representations of knot groups into $\text{SL}(2, \mathbb{C})$ 538
4. Deformations of representations of knot groups 544
5. Twisted Alexander polynomials .. 548
6. Twisted Alexander polynomials of hyperbolic knots 560
Acknowledgements ... 569
References ... 569

Meridional and Non-meridional Epimorphisms between Knot Groups .. 577
Masaaki Suzuki
1 Introduction ... 578
2 Some relations on the set of knots 579
3 Twisted Alexander polynomial and epimorphism 580
4 Meridional epimorphisms 584
5 Non-meridional epimorphisms 591
6 The relation \geq on the set of prime knots 596
7 Simon’s conjecture and other problems 597
Acknowledgements .. 599
References .. 599
Advanced Lectures in Mathematics
Volume 32

Handbook of Group Actions

Volume II

Companion to the volume
Handbook of Group Actions, Volume I

edited by
Lizhen Ji
Athanase Papadopoulos
Shing-Tung Yau
ADVANCED LECTURES IN MATHEMATICS

Executive Editors
Shing-Tung Yau
Harvard University
Cambridge, Mass., U.S.A.

Kefeng Liu
University of California at Los Angeles
Los Angeles, Calif., U.S.A.

Lizhen Ji
University of Michigan, Ann Arbor
Ann Arbor, Mich., U.S.A.

Editorial Board
Chongqing Cheng
Nanjing University
Nanjing, China

Tatsien Li
Fudan University
Shanghai, China

Zhong-Ci Shi
Institute of Computational Mathematics
Chinese Academy of Sciences (CAS)
Beijing, China

Zhiying Wen
Tsinghua University
Beijing, China

Zhouping Xin
The Chinese University of Hong Kong
Hong Kong, China

Lo Yang
Institute of Mathematics
Chinese Academy of Sciences (CAS)
Beijing, China

Weiping Zhang
Nankai University
Tianjin, China

Xipiing Zhu
Sun Yat-sen University
Guangzhou, China

Xiangyu Zhou
Institute of Mathematics
Chinese Academy of Sciences (CAS)
Beijing, China
Foreword to Volumes I and II

The decision of editing this Handbook came after an international conference we organized in Kunming (the capital of the Yunnan Province, China) on July 21–29, 2012, whose theme was “Group Actions and Applications in Geometry, Topology and Analysis”.

Kunming is a wonderful place for meetings and for mathematical discussions, especially in the summer, when the weather is most favorable. The conference was a success, from the mathematical and the human point of view. The city is warm, and the landscape is beautiful. There is a big lake, and a mountain behind the lake. Mathematicians like beauty. Hermann Weyl said: “My work always tried to unite the truth with the beautiful, but when I had to choose one or the other, I usually chose the beautiful.” (Quoted in Hermann Weyl’s Legacy, Institute for Advanced Study.)

The first two volumes of this Handbook are a record of the Kunming conference, but above all, we want them to be a convenient source for people working on or studying group actions. In spite of the fact that there were 63 talks, we covered at Kunming only a small part of this broad subject. In fact, group actions are so important that it is surprising that there was no available handbook on that subject so far. It is certainly the ubiquity of group actions that makes such a project so vast and therefore difficult to attain, and our aim for the time being is to start it. The present two volumes are the first on this important subject, and more volumes in the same series will appear in the future. Other conferences on the same subject are also planned in the future; the next one will be in Sanya (Hainan Province).

This Handbook will serve as an introduction and a reference to both beginners, non-experts, experts and users of group actions.

The conference in Kunming would not have gone so smoothly without the generous and devoted help of the local organizers, namely, Provost Ailing Gong, Dean Xianzhi Hu, Party Secretary Fengzao Yang, Deputy Dean Yaping Zhang, Youwei Wen, and Jianqiang Zhang from the Kunming University of Science and Technology. We would like to thank them for their work and hospitality.

Many people have also helped with refereeing and reviewing the papers in this Handbook, and we would like to thank them all for their help.

L. Ji, A. Papadopoulos, and S.-T. Yau
Ann Arbor, Strasbourg, and Cambridge MA
November, 2014
This is the second volume of the Handbook of Group Actions, which will contain several volumes.

The present volume is divided into five parts, where the chapters are organized according to the nature of the groups concerned or to the applications of the actions involved.

Part I: Geometric Topology

This part consists of 5 chapters.

Discrete groups such as fundamental groups of manifolds and their actions on topological spaces are essential in topology. In geometric topology, interactions between topology and the fundamental group (or its group ring) are particularly important, and this is reflected in various far-reaching conjectures and problems such as the Borel conjecture for aspherical manifolds, the Novikov conjecture, the Baum-Connes conjecture, the Farrell-Jones conjecture and the space form problem.

Chapter 1 by F. T. Farrell, A. Gogolev and P. Ontaneda discusses how exotic differentiable structures on higher-dimensional spheres and related unexpected nontrivial topology of the stable pseudo-isotopy space led to solutions of longstanding problems on the topology of the space of negatively curved metrics on Riemannian manifolds and the topology of the space of Anosov diffeomorphisms. The space of negatively curved metrics is a generalization of the Teichmüller space of hyperbolic surfaces. The authors discuss several results showing that in dimensions higher than ten, this space is disconnected and has nontrivial homotopy groups, in sharp contrast with the Teichmüller spaces of surfaces. They also describe an analogy between metrics of negative curvature and Anosov diffeomorphisms and they present several results on the existence of these diffeomorphisms, on the rigidity of manifolds admitting them and on the nontrivial topology of spaces of Anosov diffeomorphisms.

Chapter 2 by J. Guaschi and D. Juan-Pineda constitutes a comprehensive introduction to surface braid groups and a survey of results on the Farrell-Jones isomorphism conjecture and its variants, e.g. the fibered Farrell-Jones conjecture on the lower algebraic K-theory of group rings of surface braid groups. One purpose of these isomorphism conjectures is to compute the algebraic groups explicitly, though it is very difficult to carry them out in general. This paper also contains explicit computational results for surface braid groups. The combination of these two kinds of results makes surface braid groups special.

Groups acting on trees often have particular properties, generally related to decompositions of these groups, and results about the whole groups can be as-
sembled from those of vertex and edge stabilizers. Chapter 3 by S. K. Roushon is a survey on the Farrell-Jones fibered isomorphism conjecture in both K- and L-theories and its relation with the vanishing of the Whitehead groups for groups acting on trees. The author presents both the classical material and the recent developments of the lower K-theory and the surgery L-theory of groups acting on trees. The paper ends with a list of open problems on the (fibered) isomorphism conjecture.

Motivated by Kazhdan’s property T of groups acting on Hilbert spaces, some recent activity is concerned with actions of groups on Banach spaces. Affine actions of a group G on a Banach space E can be translated into properties of the first cohomology group of G with coefficients in the G-module formed by the Banach space E together with a representation of G. Fixed point properties of such group actions are equivalent to vanishing of associated cocycles. The existence of proper actions on Hilbert spaces has implications in the setting of the Baum-Connes conjecture for groups. Chapter 4 by P. W. Nowak is a survey on recent progress on group actions on Banach spaces and their fixed point properties, motivated by property T, but with a stress on actions on Banach spaces which are not Hilbert spaces. The author also thoroughly discusses the property known in the case of Hilbert spaces as a-T-menability, or the Haagerup property, that is, the existence of metrically proper affine isometric actions on Banach spaces. Applications to the dimension theory of boundaries of hyperbolic groups are mentioned.

One basic problem on spherical space forms asks which finite groups can act freely on spheres by homeomorphisms – or diffeomorphisms. In dimension three, this corresponds to the question of which finite groups can occur as fundamental groups of compact topological or smooth manifolds. In Riemannian geometry, the spherical space form problem amounts to the classification of compact Riemannian manifolds with constant sectional curvature, and it was solved quite satisfactorily. On the other hand, the topological spherical space form problem is more subtle, and there has been a lot of work on it. Chapter 5 by I. Hambleton concerns topological spherical space forms and it is an updated short survey on this problem, starting from the nineteenth century work, and ending with the work done recently based on Perelman’s solution of the Poincaré conjecture. Some new directions of research in this field are also mentioned.

Part II: Representations and Deformations

This part consists of 5 chapters.

For a discrete subgroup Γ of a semisimple Lie group G, the most natural and obvious action is probably the action of Γ on the associated symmetric space G/K, where K is a maximal compact subgroup of G. Particular examples are the action of a Fuchsian group on the upper half-plane and the action of a Kleinian group on three-dimensional hyperbolic space. There are at least two ways of generalizing these examples. The first one is to consider representations of discrete groups into semisimple Lie groups and their actions on associated symmetric spaces, and the second one is to consider many actions of a given type, that is, families, or deformations of such actions, simultaneously.

Chapter 6 by R. D. Canary is a survey on the dynamics of the action of the
outer automorphism group $\text{Out}(\Gamma)$ of a word hyperbolic group Γ on the character variety of representations of Γ in a semisimple Lie group G. The stress is on two aspects of this theory: (1) the setting started by Labourie and developed later on by Guichard, Labourie and Wienhard on the proper discontinuity of the action on spaces of Anosov representations; (2) the works of Canary, Gelander, Lee, Magid, Minsky and Storm on the special case where Γ is the fundamental group of a compact-orientable 3-manifold with boundary and $G = \text{PSL}(2, \mathbb{C})$.

In Chapter 7, J. Maubon surveys the Higgs bundle theory of Hitchin and Simpson and he shows how these bundles can be used in the representation theory of complex hyperbolic lattices into Lie groups of Hermitian type. He proves in particular the rigidity of the so-called maximal representations. The survey covers representations of surface groups but the main part of the survey concerns representations of higher-dimensional lattices. For this reason, the main Lie group that is involved is the Hermitian Lie group $\text{SU}(p; q)$, since this is the only simple Lie group of Hermitian type into which maximal representations of higher-dimensional complex hyperbolic lattices are expected to exist.

Chapter 8 by K. Ohshika concerns deformation spaces of Kleinian groups, and limits of such groups. Deformation spaces are equipped with several different topologies (this was highlighted by Thurston and others), deformation spaces have several boundary structures, with complicated structure. Ohshika studies in particular the Bers boundaries for quasi-Fuchsian groups. He presents recent results that he obtained, which provide a complete classification of the geometric limits of quasi-Fuchsian groups. Combined with work of Kerckhoff and Thurston, these results explain why the action of the mapping class group on Teichmüller space does not extend continuously to a Bers boundary, and the author describes a quotient of this boundary, the so-called reduced Bers boundary, which admits a continuous action of the mapping class group.

Teichmüller spaces are parameter spaces which describe deformation of (equivalence classes of) complex structures on surfaces. Several chapters of the first volume of this handbook deal with Teichmüller spaces and their associated mapping class groups. In principle, complex structures are defined abstractly by charts. But there is another point of view, namely, to consider deformation of surfaces embedded in higher-dimensional manifolds, and in particular, four-dimensional manifolds. Diffeomorphism groups and hence mapping class groups of surfaces act on the space of embeddings of the surfaces. One question is how different these embeddings are when viewed from the point of view of the diffeomorphism group of the ambient space. Chapter 9 by S. Hirose is a survey of results on deformations of smooth surfaces embedded in four-dimensional manifolds with respect to these diffeomorphism groups and to the mapping class groups of the surfaces. Given an embedding e of the surface in the 4-manifold, the main question which is investigated is to what extent a diffeomorphism ϕ of an embedded surface extends to a diffeomorphism Φ of the ambient 4-manifold respecting the embedding e, that is, satisfying $\Phi \circ e = e \circ \phi$. The author surveys some flexibility and rigidity results on this question. Knotted and unknotted embeddings of closed surfaces in the 4-sphere and algebraic curves in $\mathbb{C}P^2$ are considered. Results on the Rokhlin quadratic form and on the Arf invariant are used.
One important and effective method to deform surfaces in four-dimensional symplectic manifolds is to consider Lefschetz fibrations. This subject was motivated by the study of Lefschetz fibrations in algebraic geometry, a basic tool in that area, and in particular in the study of algebraic surfaces. The works of Donaldson and Gompf showed that these fibrations give a fairly complete description of symplectic 4-manifolds. Motivated by the question of the geography of algebraic surfaces in terms of the ratio (or the slope) of two invariants of algebraic surfaces, in Chapter 10, N. Monden gives an introduction to Lefschetz fibrations with a particular stress on the relation with mapping class groups. The author presents several methods of construction of Lefschetz fibrations and he gives a summary of some results on the geography of symplectic 4-manifolds and, in particular, on the construction of some Lefschetz fibrations over the sphere S^2 which violate the so-called slope inequality.

Part III: Geometric Groups

This part consists of 3 chapters.

Among all infinite discrete groups, the modular group $SL(2, \mathbb{Z})$ is special and it plays the role of a model for several classes of groups. One reason for its importance comes from its actions on very different spaces. Chapter 11 by A. M. Uludağ is a survey on several actions of $SL(2, \mathbb{Z})$, starting from the very classical ones and ending with the recently discovered ones. The examples include the actions on Farey trees, on binary quadratic forms, on planar lattices, on the unit circle considered as the boundary of the upper half plane, and on dessins d’enfants, introduced by Grothendieck in the 1980s.

Simplicial sets are basic objects in algebraic topology and they are a generalization of simplicial complexes. They are related to the notion of simplicial group. Chapter 12 by J. Wu gives an introduction to simplicial groups and simplicial structures on geometric groups such as braid groups, link groups and mapping class groups.

By definition, a Lie group is a combination of a group and a compatible smooth manifold. If we ignore the underlying smooth structure, then we obtain a discrete group, or an abstract group. One basic question in Lie group theory is to what extent the smooth structure of a Lie group can be recovered from the group structure. For example, when is a group homomorphism a Lie group homomorphism? Similar questions can be raised for rational points of linear algebraic groups over general fields. Chapter 13 by I. A. Rapinchuk is a survey on known results on these questions and on their applications such as to character varieties of elementary subgroups of Chevalley groups over finitely generated commutative rings.

Part IV: Geometric Invariants and Growth of Discrete Groups

This part consists of 2 chapters.

One important question in the field of group actions in algebraic geometry concerns the actions of algebraic groups on algebraic varieties. The behavior of orbits of such actions is a basic question. This theory is one of the basic objects of geometric invariant theory and it is closely related to the problem of constructing moduli spaces in algebraic geometry.
In Chapter 14, D. P. Bác and N. Q. Thăng give a summary of classical geometric invariant theory over algebraically closed fields as well as a survey of geometric invariant theory over non-algebraically closed fields, i.e., actions of algebraic groups on affine varieties over non-algebraically closed fields. The authors discuss questions related to the notion of stability, of various types and closures that are akin to this algebraic geometry setting and of other topological properties of orbits.

One basic point of view in geometric group theory is to consider a finitely generated group as a metric space. One way to do this is to endow the group with a word metric (which depends on the choice of a generating set). One geometric object associated to such a group (or a word metric) is the growth series, whose coefficients are the number of group elements at fixed distance from the identity element. This gives rise to the important notion of spherical growth series. Chapter 15 by M. Fujii gives an introduction to a method of computing spherical growth series of finitely generated groups via finite-state automata. The theory is illustrated by several explicit examples of growth series related to the pure Artin group of dihedral type. The paper also contains background material on Artin groups as well as a survey on the known groups for which the growth series is rational or irrational, for some or for an arbitrary generating set.

Part V: Music and Group Actions

Chapter 16 by A. Papadopoulos, concerns applications of groups and group actions in arts, and more precisely in music theory and music composition. Several examples are presented, especially from the compositions and the theoretical work of the French composer Olivier Messiaen. Since most readers of this handbook are not familiar with the details on the relation between mathematics and music — although most of them know that such a relation exists — the chapter also contains an introduction, with a historical overview, on this subject.
Contents

Part I: Geometric Topology

Exotic Topology in Geometry and Dynamics .. 3
F. Thomas Farrell, Andrey Gogolev, and Pedro Ontaneda
1 The space of negatively curved metrics .. 4
2 The Teichmüller and the moduli spaces of negatively curved metrics 7
3 Bundles with negatively curved fibers .. 13
4 Exotic topology and hyperbolic dynamical systems 16
References ... 20

A Survey of Surface Braid Groups and the Lower Algebraic
K-Theory of Their Group Rings .. 23
John Guaschi and Daniel Juan-Pineda
1 Introduction ... 24
2 Basic definitions of surface braid groups 25
3 Some properties of surface braid groups 31
4 Braid groups of the sphere and the projective plane 43
5 K-theory of surface braid groups ... 55
Acknowledgments .. 65
References ... 65

The Isomorphism Conjecture for Groups with Generalized Free
Product Structure .. 77
Sayed K. Roushon
1 Introduction ... 78
2 Lower K-theory and surgery L-theory of groups acting on trees 83
3 The isomorphism conjecture for groups acting on trees 90
Acknowledgments .. 115
References .. 115

Group Actions on Banach Spaces ... 121

Piotr W. Nowak

1 Introduction ... 122
2 Preliminaries ... 123
3 Fixed points ... 126
4 Metrically proper actions ... 139
5 Final remarks .. 143
Acknowledgments .. 144
References ... 144

Topological Spherical Space Forms .. 151

Ian Hambleton

1 Introduction ... 152
2 First steps: pre-1960 .. 152
4 Semicharacteristic obstructions and 3-manifolds 156
5 Poincaré complexes .. 156
6 Surgery theory and stable existence 158
7 The finiteness obstruction .. 159
8 Space forms in the period dimension 160
9 Topological Euclidean space forms 161
10 Further topics ... 162
References ... 163

Part II: Representations and Deformations

Dynamics on Character Varieties: A Survey 175

Richard D. Canary

1 Overview ... 176
2 Basic definitions .. 177
3 Teichmüller space ... 180
4 Convex cocompact representations 182
5 Hitchin representations ... 183
6 Anosov representations .. 184
7 PSL(2, C)-character varieties .. 186
Contents

8 Appendix ... 192
References ... 196

Higgs Bundles and Representations of Complex Hyperbolic Lattices

Julien Maubon

1 Introduction ... 202
2 The symmetric space $\text{SU}(p,q)/\text{S(U}(p) \times \text{U}(q))$ 206
3 Representations, flat bundles, Higgs bundles 209
4 Proof of the Milnor-Wood type inequality 230
5 Maximal representations .. 236
References ... 241

Geometric Limits of Kleinian Groups and Their Applications

Ken’ichi Ohshika

1 Introduction ... 246
2 Preliminaries ... 248
3 Examples of geometric limits 251
4 Classification of geometric limits 254
5 Boundaries of deformation spaces 262
References ... 267

Deformations of Surfaces Embedded in 4-dimensional Manifolds and Their Mapping Class Groups

Susumu Hirose

1 Introduction ... 272
2 Preliminaries ... 273
3 Surfaces standardly embedded in S^4 274
4 Flexible surfaces in 4-manifolds 289
5 Knotted embeddings in S^4 290
6 Problems ... 291
Acknowledgments ... 292
References ... 293

On the Geography of Lefschetz Fibrations

Naoyuki Monden

1 Introduction ... 298
Abstract Homomorphisms of Algebraic Groups and Applications

Igor A. Rapinchuk

1 Introduction 398
2 On algebraic rings 404
3 K-theoretic background 410
4 Rigidity results over commutative rings 415
5 Rigidity results over noncommutative rings ... 429
6 Applications to character varieties and deformations of representations 434

Acknowledgments 443
References 444

Part IV: Geometric Invariants and Growth of Discrete Groups

Some Topics in Geometric Invariant Theory over Non-algebraically Closed Fields

Dao Phuong Bac and Nguyen Quoc Thang

1 Introduction 452
2 An overview of geometric invariant theory. Observability and related notions 452
3 Stability in geometric invariant theory over non-algebraically closed fields 466
4 Topology of relative orbits for actions of algebraic groups over completely valued fields 470

Acknowledgments 473
References 473

Computation of the Spherical Growth Series of Finitely Generated Groups and Monoids by Using Automata

Michihiko Fujii

1 Introduction 480
2 Finite-state automata and the subset construction 482
3 Unique-geodesic word acceptors for groups and monoids, and growth series 485
VI Contents

4 Examples of rational growth series and irrational growth series ... 491
5 The spherical growth series of Artin groups and Artin monoids ... 493
6 The pure Artin group $P_{I_2(k)}$ and the monoid $P_{I_2(k)}^+$ of dihedral type ... 500
7 Automata for geodesic representatives of $P_{I_2(k)}^+$ 503
8 Unique-geodesic word acceptors constructed by subset construction ... 505
9 The spherical growth series of $P_{I_2(k)}^+$ 513
10 The spherical growth series of $P_{I_2(k)}$ 515
Acknowledgments ... 516
References ... 516

Part V: Music and Group Actions

Mathematics and Group Theory in Music 525

Athanase Papadopoulos

1 Introduction .. 526
2 A brief overview of the interaction between mathematics and music ... 526
3 The music of Olivier Messiaen ... 540
4 Rhythm ... 542
5 Counterpoint .. 550
6 Modes of limited transposition .. 559
References ... 565