Contents

Preface ix
1 Introduction: Maxwell's Equations 1
1.1 Hodge Star 2
1.2 Maxwell's Equations 6
1.3 Conservation Law of Charge 7
1.4 Coulomb's Law 11
1.5 Ampère's Law 14
1.6 Biot-Savart Law 15
1.7 Gauss's Linking Formula 17
1.8 Faraday's Law 18
1.9 Ampère-Maxwell Law 19
1.10 Potential and Gauge 20
2 Static Electromagnetism 25
2.1 Electric Field and Scalar Potential 25
2.1.1 Poisson's and Laplace's Equation 25
2.1.2 Point Charge 26
2.1.3 Uniform Ball 27
2.1.4 Line Charges 29
2.2 Interface Condition 32
2.2.1 Infinite Plane Charge 32
2.2.2 Spherical Shell 36
2.2.3 Interface Condition 37
2.2.4 Electric Conductor 38
2.3 Boundary Value Problem 40
2.3.1 Uniqueness 40
2.3.2 Green's Function 41
2.3.3 Method of Image 44
2.4 Electric Dipole and Dielectric Polarisation 46
2.4.1 Electric Multipole Expansion 46
2.4.2 The Electric Dipole 49
2.4.3 Dielectric Matter 49
2.5 Magnetic Field and Vector Potential 52
2.5.1 Magnetic Field 53
2.5.2 Interface Condition 58
2.6 Magnetic Moment and Magnetic Dipole 59
2.6.1 Magnetic Moment 59
2.6.2 Magnetic Dipole Layers 63
2.7 Linking and Magnetic Helicity 65
2.8 Dirac Monopole 67
3 Electrodynamics 71
3.1 Force and Energy 71
3.1.1 Lorentz Force 71
3.1.2 Electromagnetic Energy 74
3.2 Electromagnetic Induction 77
3.2.1 Electromotive Force and Flux Rule 77
3.2.2 Mutual Inductance 80
3.2.3 Self Inductance 81
3.2.4 Magnetostatic Energy 82
3.3 Electromagnetic Wave 83
3.3.1 Wave Equation 83
3.3.2 Plane Waves 84
3.3.3 Polarization 86
3.3.4 Wave Packets 88
3.4 Green's Functions 90
3.4.1 Wave Equation with Source 90
3.4.2 Green's Function for the Wave Equation 91
3.4.3 Retarded and Advanced Solutions 93
3.5 Dipole Radiation 95
3.5.1 Spherical Wave 95
3.5.2 Electric Dipole Radiation 96
3.6 Moving Point Charge 100
3.7 Scattering 107
$4 U(1)$ Gauge Theory 109
4.1 Fiber Bundle 109
4.1.1 Fiber Bundle 109
4.1.2 Vector Bundle 115
4.1.3 Principal Bundle 119
4.2 U(1)-connection and Parallel Transport 121
4.2.1 Vertical Vector Field 122
4.2.2 Connection 1-form 123
4.2.3 Horizontal Vector 125
4.2.4 Parallel Transport 126
4.3 Curvature and Chern Class 129
4.3.1 Curvature 2-form 129
4.3.2 Holonomy and Curvature 131
4.3.3 Chern Class 133
4.4 Local Gauge and Transition 134
4.4.1 Local Gauge 1-form via Trivialization 135
4.4.2 Connection via Transition Functions 138
4.5 Gauge Transformation 141
4.5.1 Gauge Transformation 141
4.5.2 Local vs. Global Gauge Transformations 144
4.6 Maxwell Theory as $U(1)$-gauge Theory 146
4.6.1 Potential as Gauge 1-form 146
4.6.2 Electromagnetic Field as Curvature 146
4.6.3 Maxwell Action 147
4.6.4 Gauge Principle and Charge Conservation 148
4.6.5 Magnetic Monopole 148
4.7 Associated Bundle and Matter Field 150
4.7.1 Associated Vector Bundle 151
4.7.2 Hermitian Inner Product 152
4.7.3 Covariant Derivative 152
4.7.4 Matter Wave Function 154
5 Electromagnetism and Special Relativity 157
5.1 Lorentz Transformation 157
5.1.1 Lorentz Group 157
5.1.2 Transformation of Tensor Fields 159
5.1.3 Invariance of Inner Contraction 162
5.2 Lorentz Invariance of Maxwell's Equations 162
5.2.1 Transformation of Electromagnetic Fields 162
5.2.2 Transformation of Charge-Current Density 164
5.2.3 Transformation of Maxwell's Equations 164
5.3 Relativistic Lorentz Force Law 167
5.3.1 Non-relativistic Charged Particle 167
5.3.2 Relativistic Charged Particle 168
Bibliography 171

