Contents Online

# Communications in Mathematical Sciences

## Volume 7 (2009)

### Number 3

### On the derivation of the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation and validation of the KZK-approximation for viscous and non-viscous thermo-elastic media

Pages: 679 – 718

DOI: https://dx.doi.org/10.4310/CMS.2009.v7.n3.a9

#### Author

#### Abstract

We consider the derivation of the Khokhlov-Zabolotskaya-Kuznetzov (KZK) equation from the nonlinear isentropic Navier-Stokes and Euler systems. The KZK equation is a mathematical model that describes the nonlinear propagation of a finite-amplitude sound pulse in a thermo-viscous medium. The derivation of the KZK equation has to date been based on the paraxial approximation of small perturbations around a given state of the Navier-Stokes system. However, this method does not guarantee that the solution of the initial Navier-Stokes system can be reconstructed from the solution of the KZK equation. We introduce a corrector function in the derivation ansatz that allows one to validate the KZK-approximation. We also give the analysis of other types of derivation. We prove the validation of the KZK-approximation for the non-viscous case, as well as for the viscous nonlinear and linear cases. The results are obtained in Sobolev spaces for functions periodic in one of the space variables and with a mean value of zero. The existence of a unique regular solution of the isentropic Navier-Stokes system in the half space with boundary conditions that are both periodic and mean value zero in time is also obtained.

#### Keywords

KZK equation, isentropic Navier-Stokes system, entropy, paraxial approximation

#### 2010 Mathematics Subject Classification

41A65, 58J37, 76L05, 76N10, 76N99

Published 1 January 2009