Contents Online
Pure and Applied Mathematics Quarterly
Volume 16 (2020)
Number 5
Frobenius’ theta function and Arakelov invariants in genus three
Pages: 1387 – 1418
DOI: https://dx.doi.org/10.4310/PAMQ.2020.v16.n5.a2
Author
Abstract
We give explicit formulas for the Kawazumi–Zhang invariant and Faltings delta-invariant of a compact and connected Riemann surface of genus three. The formulas are in terms of two integrals over the associated jacobian, one integral involving the standard Riemann theta function, and another involving a theta function particular to genus three that was discovered by Frobenius. We review part of Frobenius’ work on his theta function and connect our results with a formula due to Bloch, Hain and Bost describing the archimedean height pairing of Ceresa cycles in genus three.
Keywords
Faltings delta-invariant, Kawazumi–Zhang invariant, theta function
2010 Mathematics Subject Classification
Primary 14H15. Secondary 11G50, 14G40, 14H40, 14H42, 14H45.
Received 12 November 2019
Accepted 30 January 2020
Published 17 February 2021